CDF
User's Guide

Version 2.7, April 2, 2002

National Space Science Data Center

Copyright © 2002 NASA/GSFC/NSSDC
National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)
- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

DECnet - NSSDCA::CDFSUPPORT
Internet - cdfsupport@nssdca.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and permission
notice are preserved on all copies.

mailto:cdfsupport@nssdca.gsfc.nasa.gov

Contents

1.1 INEEOAUCTION ...ttt ettt ekt b e bt e b et e s e s e et e e bt sbeeb e e st e st et et e s besbeebeeneensentens 1
L2 WY USE CDF? ..ottt ettt ettt ettt st e s ae e beesb e e sseesaeesaessaesseessessbesseesssessaesseenseassenssanssensens 1
1.3 CoNCEPtUAl OTZANIZAION........c.eervieiierieeiieieeteesteerteesteetesteseesseesseesaeessesssesseesseessaessesssesssesseessesssesssesseesseenseessenss 1
1.4 Features 0f the CDF LiIDIAIYcccveciiiiieiiieie ettt sttt beesaesstesaeesaeenseenseeseenseenseanseensenseensens 2
1.4.1 File FOIMAt OPLIONSeeeuieiieiieieeieeieeteste st e sttt e et e sete st e st enseessessaesseeseensesnsesssesseenseenseenseenseensenssenseensenn 2
1.4.2 Data ENCOAING OPLIONSecvieiieiiieieeieeiterieeie et eteete st esteesteesseesaessaeseesseessesssesseesseesseensesnsesnseensesssesseenses 7
1.43 (07031010 (<353 () FO USSP 7
1.4.4 SPATSEIIESS ...enveeteettestieteete et et et teeuee st e anteen bt emteeseeeseease e et e st emeeeatees e e et enteenteen s e eeeeeneeebeenteenteenteeneeeneenneenteens 7
1.4.5 Variable Data ACCESS OPLIONS.c..ccieirieirierieiieitiesteerteeteetestesteesteeteesaeessesseeseesseessesssesssessseseesseessesnsenses 7
L.5 Organizing Your Data in @ CDF ..ottt sttt ettt st ea 7
1.5.1 VATTADIES ...ttt ettt a et ettt et e bt e a e e st e a e et e b e ekt eheeheeb e eneentebeeteebeeteeneeneenneneens 7
Li6 AITTDULES. ..ottt e b bt ea et e e e et e bt e bt e b e e bt es e e st et e b e e bt bt e aeen et et bbbt eae st et entes 11
1.7 CDF TOOIKI ittt ettt b et b e bt e bt et e et e st bt sb e ebe e bt ea b e b et e e bt ebeebeeneenneneentes 12
1.8 Library INterface ROULINESccccieviiiiieiiietieiieieeie ettt ete et et esteesteesbeesseessessaesseesseessesssesssesseesseeseensenns 13
1.8.1 Standard INEEITACEco.eeueiiiiiii ettt ettt sttt sttt ae 13
1.8.2 INtEINAL INTETTACEc.entieiieieeeitc ettt ettt ettt be st e eneenaes 14
1.9 CDF JaVa INEETTACE.etitiieriieiieieeitetet ettt sttt st st b ettt ettt sae e bt et easententes 14
L O 521 1415 (RPN 14
1.10.1 Creating a CDF, the Hard Way (But Not That Hard)...........ccccoeiiriiriiieeee e 15
1.10.2 Creating a CDF, an Easier WaYccooiiiiiiiiiiieieeieseee ettt sttt ettt ae et et neesneenneas 20
2.1 CDF Library 25
2.1.1 IIEEITACES ...ttt ettt st e b e bttt et et e h e bt b et ebt e e bt e bt e bt et e saee 25
2.1.2 CDF MOMES ...ttt ettt ettt et a et e e ae ekt e bt e et ee e em e em e e e b e e teebeeaeeseeneenseseteabesaeeneeneenseneennan 27
2.13 LLIITIIES -ttt ettt b e h e bttt skt b e b bt a e h et et b bbbt bt et et e b she e bt eneenbeeenten 28
2.14 SCTALCH FALES ..ttt ettt s e e bbbt et e et e st s b e bt ebe et e betens 28
2.1.5 CACKING SCHEIMC........vieiiieiiiciieieeie ettt ettt ettt e et eesbessbesteesae e beesseeseessseseessaesseassesssenseesseessesssenses 29
2.2 CDFS ittt ettt bbbt h ettt h bt bbbt e a et et b e st be bt bt et et enee 30
2.2.1 AACCESSINE ...ttt ettt et et et e st e et et e eaee e et e esa et e e st e enseeaseeaeesste st enseenteentees s et e en st enseenseenseenseentenneeteenreans 30
222 CTRALIIEZ ...ttt ettt ettt ettt st e et e e te et e e a et et e et e et e et e emeeeseeeseesa e e st emseemeeeae e st e teenteenseeseeaseenseenneenneenes 31
2.23 (057501114 V=SSP R 31
224 (] 10 TS] 1 VSRR 31
2.2.5 DIEIELINE ...ttt ettt ettt sttt e ae et e e et et et et e e heeh e e ae e st e e e e e et e e bt e ke bt eh e eh e e atente s et e ebeeheebeeneenseneentas 31
2.2.6 INAITIIILZ ettt ettt s a e s b et e st e st ea e e bt e bt e bt e bt et e e ae e eat e sheenbe e bt enteenteebeenbeebean 31
2.2.7 FOTTIIAL ..ottt h e b e b ettt e st sat e s be et e et e e st e ebeesb e e b e enbeenaesaeesas 32
2.2.8 ENCOMINE ..ottt ettt ettt et e et e e s b e e sbessbesseesae e beesseesseessensaeseenseesbeessenseenseenseenneenes 33
2.2.9 DIECOTING ...cvvieetieiiectieeeet ettt ettt ettt e e te e bt esbeesbeesse st aesseesbeesbeessesseesaeesseenseessesseenssesssessaesseesseensennes 36
2.2.10 COMPICSSION....eevieteereereeeereeteesteeseesseassesseesseesseasseasseassesseesseesseessesssesssesseessesssesssesssesssesseesseessesssenssenssessens 37
22,11 LAITIES 1ttt ettt b e s b ettt et s h e bbbt ea e sttt b e bt bt e bt et et et besae bt et eabenaens 38
2.3 VATTADIES ...ttt h bt et h ettt h bbbt a et b bt sh e bt bt eab et et 38
2.3.1 10 01 O OO PUP U STRTPURPROP 38
232 AALCCESSINE ...ttt ettt ettt ettt et et e a e e s et e e bt e te et e e a e e eh e e eh e e et e a et eateeh e et e e st enteenteenaeeateeneeeneenteeteens 39
233 (057501114 V=SSP 39
234 (] 10 TS] 1 VS PR T 39
235 INAITIIILZ .ttt b ettt ettt s a e e b et e st ea e e e e eb e e bt e bt em bt embeeae e eateebeenbe e bt enteen e ebeenbeebean 39
2.3.6 INUITIDEIING ..ottt ettt et ettt et e bttt eb e e st ea e et em s e se et e ebeebeebeeneeseenseneeebeebeeseeneenseneensenes 40
2.3.7 | D153 (151 VOO OO PP 40
2.3.8 DIMENSIONALIILY ..evviiiieiieeiiesieie ettt ettt et e et e e saessaesteesaeesbeesseeseesseesseessensseassesssenseesseessesnsenses 40
2.3.9 Data SPECTTICALIONeevvieeieiieiieie ettt ettt et esbe e besteesae e beesseessesssesseesbaesseessenssesseesseessesssensns 40
23,10 RECOTA VAITANCEc.eitiiititeiieeiiet ettt ettt ettt ettt ettt et e b s bbbt e bt e bt et entenaesaeebesaeebeeneennenaens 41
2.3.11 DIMENSION VAITANCEc.uitietirtietieiteitetenteeteste st ettt ettt ettt sbe bt ebt et eatentestesbe s bt e bt eaeeasententenbesaeebeeneensenaens 41
23012 RECOTAS. .ttt bbb ettt b e e bt bt e st ea b et s e e bt s bt e bt e bt ea b et et e bt sae bt et eatenaens 42
2 0 I TN o 7 6T N) £~ USROS 47

2.3. 14 COMPICSSION....eevieteeurieeeeeeteeteesteesseesesssesstesseesseesseasseaseesseesseesseessesssesssesssessesssesssesssesssesseesseensenssenssesssessens 47

2 0 B T Y - 1 o) 4 1 SRS UR PSP 48
2.3.16 SINGIE VAIUE ACCESS...uieuiieiieeiieiieiieieeiestesttesteesteeteeseesseeseenteesseassessaesseesseensesssesseesseenseenssenseensesssesseensen 49
2317 HYPET ACCESS cuveeentieeiieeite ettt ettt ettt ettt s bt et e e bt e bt e ettt e bt e s bt e e abtesabee e beeea bt e sabteeabeesabeeeabeesabeesabeesabaesntee s 50
2.3.18 SCQUENTIAL ACCESS. . ueiuuiiiieiieiieiieieeteeteste st esteeteeteestessees st enseesseassessaesseeseenseansesnsesssesseenseenseensenssenseensen 52
2.3.19 MUltiple Variable ACCESSc.ueeuieiuieiieieiieitie sttt ettt et et et e e e etesseesbeesteeneesneeeneesseeteenseenseeneesneanneas 53
2.3.20 Variable Pad ValUes.ooouiiiiiiiiieie ettt sttt et ettt et eneeeneeenean 54
2.4 PN 138 011U 55
2.4.1 INAITIIILZ et b ettt ettt s a e e b et et e st ee e eb e e bt e b e e bt embeeaeesateebeenbe e bt en bt en e ebeenbeebean 55
24.2 INUITIDEIING ...ttt ettt ettt ettt ettt et e eb e e st ea e et en e se et e ebeeeeebeeseeseemeensebesaeeseeneenseneensenes 56
2.4.3 ATTIDULE SCOPES ...vvivieitieiieite et et ettt et e ettt et e e et e e teesteebeesbeessesseesseasseesseessesssesssesseesseessesssesssesssesseeseenrenns 56
2.4.4 DICIETINE ...vvevieieeteete ettt ettt et e st e st e te e bt et e eteeste e beesseessessbeeseesaeesseesseesseessanseenseesseesseesaeaseesseenseenaennns 56
24.5 AIDULE ENETIES ..c..enteneiesteet ettt ettt s b e bbbt et e et bt besaeeb e et e ee 57
2.5 DALA TYPES +eeeuetteiiteiie ettt ettt ettt ettt et ettt e bt e st eea bt e s et e e e a bt e s a bt e e a bt e sa b e e e a bt e shb e e eabe e bt e ettt e bteenabeennbeenaneenns 58
2.5.1 INEEZEL DAt TYPES c.uveeutieeiieiiie ettt sttt et e st e st e e st b e e sabeesabeesabeesateesabeenateesabeenans 58
2.52 Floating Point Data TYPES.....ccveruierieiieiieniertiete et eitestteteetestesttesaee st esseenseeseesseesseenseensesssesseensesnsesnsennns 58
2.53 (O]0F:) ¢ Tor 3 g B Y T) o RSO RPR 58
2.54 EPOCH DAta TYPE...eeviiuieiieiieiieieieeiesteete et ettestestestestessesseesesseeseessansassesseesesseaseessensensessesessesseaseensassensansas 59
255 EqQUivalent DAt TYPESeecueeeueeieeieiteerieeie ettt ettt et e st et e ebeeteemeesaeesae e st enseeneeeseenseeaseenseenseenneenes 59
2.6 Compression AIZOTITRIMSooiiiiiiiii ettt ettt e b e st e bt e bt et setesaeesaeenteenteens 59
2.6.1 RUN-Length ENCOINGcviiuiieieiieieieee ettt sttt e se et et e be b ebe e st enseneeeas 59
2.6.2 HUTTIMAN 1ttt b ettt et a et e bt et e bt e sb e e b e e b e enaeeaeesas 60
2.6.3 Adaptive HUFFMAN. ..ottt ettt et eb e esbestaeste e beessessaesssesssesseenseensenns 60
2.6.4 GZIP ...ttt h e h e h et e b et h e bt b a e sttt h e bt bt e ae sttt beshe bt eaeen b et enten 60
31 Introduction 61
3.1.1 VMS, UNIX & MS-DOS ...ttt ettt sttt ettt sttt st et ettt st bt st ebe et enne e 61
3.1.2 IMACIIEOSI ...ttt ettt st b e bbbt ettt et bt bbbt et et enten 62
3.1.3 WINAOWS NT/95/98 ...ttt sttt st sh sttt et bt et be bt eateeenaen 64
3.14 Java Version of the CDF TOOIKIEcccuiiiieieiieii ettt ettt e 64
3.1.5 SPECIAL ATITIDULES ...ttt ettt et et e et e et e et e e st e st e teen e enteeneeeseesbeeseenseeneesnnesnes 64
3.1.6 SPECIAl QUALITICTeeeeeie ettt ettt et a et e et et e e e e s e ebeesbeenbeeseeneeenneenes 65

K T8 O B) <4 OSSPSR 65
321 INEEOAUCTION ...ttt ettt et b e b ettt s at e s a et e b e st e eb e e sb e e b e ebeenaeeneesaee 65
322 SpPecial AUTIDULE USAZE.....cveiieriieriieiieiieieeteesteeteeteete s testeesteesteeaessseesaesseeseesseessesssesssesseeseessesssesssesses 65
323 Executing the CDFedit PrOGIamccceviiiiieiieieciieiieieeie ettt ettt ste s b et este b e essaesseesseennesnns 65
324 Interaction With CDFEit.......cc.eeiiiiiiiiieiieie ettt st 68
33 (01D) 215 q 0T o SO TSRS PUTPURTP 69
3.3.1 INEEOAUCTION ...ttt bbbttt ettt b e s bt bt e et et e b e s bt sae e bt ebeeabeeennen 69
332 Special AUTIDULE USAZE.....cveiieriieiieiieieeieettest et eteete s testte st e st e et et e eseesseeseenseenseessesseesseenseensesnsesnnesnns 69
333 Executing the CDFexXport PrOZramccccooiieiiiiiiieiieeee ettt et e 70
334 Interaction With CDFEXPOTILcc.eeiiiiiiiieiet ettt ettt et eeseeseeebeeaeeeeenes 76
34 L) 2 eTa) 1)< o AT USRS 76
34.1 INETOAUCTION ...ttt st b e b ettt s at e s b et e e e st e eb e e sb e e b e ebeenaeeneesaee 76
342 Executing the CDFConvert ProOgramoocoooiiiiiiiiiiiiiee et 76
343 Output from the CDFconvert Program............ccccoocuiiiiiiiiiiiiiieieneeece et s 82
3.5 CDFCOMPATEveeeteeniie ettt ettt ettt e sttt e tte ettt e ateentteenbaeenseeessbeaaseesaseesaseesaseesnteesasaeensaesnsaesaseesnseensseesnsaennses 82
3.5.1 INEEOAUCTION ...ttt ettt ettt b e e bt bt et e s et et e e b e sbe e bt e st enseeennes 82
3.5.2 Executing the CDFcomMpPare PrOGIam...........cccvecuieiirieiiieiieiecieste sttt et e ste et eseessessaessaesseessessnesens 82
353 Output from the CDFcompare PrOgramccoecviriieriieiiieiesie ettt ssaessaesseeseenneses 87
3.6 CDFSTALS ...ttt ettt ettt st b et et et e ae e bt ettt ean e e a e bbbt sae e bt ettt eabeeenesanenaeen 87
3.6.1 INEEOAUCTION ...t bbbttt et ettt b e eb ettt et et s bt sae e bt ebeeasententen 87
3.6.2 Special ATIDULE USAZE......ueeiuieieieiieit ettt ettt ettt ettt et eeateste et e e e enteeseeeseesseeaseenseeneeeneeenes 87
3.63 Executing the CDFStats PrOGIAmcc.coouieiiiieiieieee ettt ettt s 88
3.6.4 Output from the CDFStats PrOGIam.........ccooiiiieiiiiiiiieiieiee et et 92
3.7 SKEIETONTADIE. ... ettt ettt ettt sttt ae st e st e st e b e sb e et e e bt ebeeseeneens e s e beebeeaeeneeneeneeneenees 93
3.71 INETOAUCTION ...ttt et b e b ettt st e s bt et e e e st e eb e e sb e e b e ebeenaeeneesae 93

3.7.2 Special AUIIDULE USAZE.....ceiiierrieiieiieiieieetieste et eteetestestee e esteeaeesbeesaesseeseesseessesssesssesseeseesseessesssenses 94

373 Executing the SkeletonTable Programi.............cciecviriiiiieniieiiiiie ettt sbeese e ees 94
3.7.4 Output from the SkeletonTable Programcccoeciiieiiinieiiee e 98
3.8 SKEIETONCDIE ...ttt ettt et et ettt b e bt bt e et et e e st e b s bt eet et et enbesaesbe e bt eaneneentes 98
3.8.1 INEEOAUCTION ...ttt et ettt b e sbe et e et e st e s bt sbe e bt bt eabeeenten 98
3.8.2 Executing the SKeletonCDF Programcccoecieiiiieiieieee ettt 99
3.83 Creating the SKeleton TabLecooiiiiiiiiiieiee ettt ettt et ettt et eneeseeeeneas 101
TR O] B] 011 Te 11 (SO PRRR 101
3.9.1 INETOAUCTION ...ttt ettt b e bt et ettt e s bt e sbe e et et e enbeeaeesaeenbees 102
392 Executing the CDFINQUIre PrOZIamcoiiiiiiieieiieteeie ettt ettt st ebe e 102
393 Output from the CDFINqUire Programccccooieiiiiiiiiiieiieeeeee et 103
BU10 CDFIT ettt ettt b bt h et et et bbbt e a e a et bbbt bt e bt ea s et et et e bbbt ebeeneenbennen 103
3.10.1 IIEEOAUCTION ..ttt ettt h bt bt e st et e e s bbbt sbeeb e emees b et et e b sbeebe e st enseneennen 103
3.10.2 Executing the CDFdir PrOgram...........ccoocuiiieiiiiieiieieee ettt seenesnne e 103
3.10.3 Output from the CDFdIir PrOGramcccoeouieiiriiiniieieeie ettt sesnne e e 104
311 CDFDIOWSE ..ttt ettt ettt ettt ettt sh e ea et e e et bt s bt b e e bt e bt et et et e s bt e bt ebeeb e e bt en b e b e st e sbesheeueeneenteaens 104
TR 0 O B) 2 T OSSPSR 104

303 CDFWALK ittt ettt s b et et a et bbbt ae st beeaeeae et ennenen 105

List of Figures

Figure 1.1 Conceptual View of a CDF, 0-Dimensional rVariablecocceeriiiiriininiiniiiieeeeeresese e 3
Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables............ccccecereeeieriininiininineneeieteteienese e 4
Figure 1.3 Conceptual View of @ CDF, ZVariables.ccccveririiiiriiniinieniniencteetcese ettt 5
Figure 1.4 MUulti-File FOTMALcooiiiiiiiiiiii ettt st et ettt st st ebe et e nee 6
Figure 1.5 Single-File FOIMAL........c.cooiiiiiiee ettt ettt et et e et e e et et esneesae e teenteeneeeneeeneenean 6
Figure 2.1 Physical vS. Virtual DIMENSIONScecuieueiieitieiieie et stte sttt ettt et et e e e e eseesseesseeseeseeneesneesneesseenseens 42
Figure 2.2 Physical vs. Virtual Records, Standard Variablecociiiiiiiiiiiiiii e 43

Figure 3.1 Window Sections, CDFEItc..eiiiiiuiiieieieeee ettt sttt ettt et st et beseeebeeseente e ensennens 69

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 3.1

Example Data Set - "Flat" Representation (0-Dimensional)..........cccecerevereereerieenieeriesieseesieesseeveevesnesseeseens 8
Example CDF - 2-Dimensional Representation (Conceptual)cccveeverierienieeniieiieeienieneeieeie e snesieeseeas 9
Example CDF - Specification for 2-Dimensional Representationc.cceccecveveevienenenieneneneneeeeneeieneens 10
Example CDF - 2-Dimensional Representation (Physical).........cccocveviieiiirienieniieiieiecieeee e 10
vAttribute eEntries for the Temperature rVariableoocoiieiieiiiiiiieeeeeee e 12
Standard INterface ROULINESc.eeiiiiiiiieieee ettt ettt st e bt e sttt e e e eneeeneesneas 26
Internal INterface ROULINES ... cc.iiuieuiieieieieese ettt ettt ettt e e e bt e et e st e steebeeaeenee e anseneens 26
Cache Size Operations, Internal INTETTACEceiriuiiiiiieeiie it e e seee s aeesaae e 30
Equivalent Byte OTAEIINGSccuiiuiiieieeieiieieetee ettt ettt ettt se et be et ese et e e et e besbeeeeebeeaeeneeeanseneens 35
Equivalent Single-Precision Floating-Point ENcCOdingsccccveeiiviiiienieiiiciecieeeeeeeee e 35
Equivalent Double-Precision Floating-Point ENCOAINGS........ccecveiiirierieriiiiiciecieeieeie e 36
Previous-missing Sparse Records Example, Conceptual View vs. Physical Storageccccccevevevvenieennnnne. 45
Default Pad VALUES......ccuoiiiriiriiiiiieiecte sttt ettt sttt et a et s besae bt nae 55
EQUIVAIENE DAtA TYPES ..uveevieiieiieieiieitesiterieete et eette st eteeteesaessaesseeseessesssesseesseenseanseenseanseessessaesseesesnsesnsennns 59

Example rVariables, CDFstats Monotonicity Checkingcccvecvieierieniesiiniesiesieseee e 87

Preface

About This Document

This document is intended to serve as both a user's guide and reference manual for the Common Data Format (CDF).
As such, it provides a primer for introducing the novice reader to the concepts of CDF as well as a reference manual for
the advanced user'. However, it does not serve as a cookbook for the proper methods of designing a CDF.

The very first questions usually asked by a reader are: What is CDF?, How is CDF used?, and How is CDF useful for
me? Although the reader will find the answers to these questions in this document, we provide here a brief description
of the conceptual basis of CDF in order to provide a proper perspective when reading the remainder of this document.

What is CDF?

CDF, in its most basic terms, is a conceptual data abstraction for storing, manipulating, and accessing multidimensional
data sets. We refer to CDF as a data abstraction because we never discuss the actual physical format in which data sets
are stored. Instead, we describe the form of the data sets and the means (interface) by which they may be manipulated.
This important difference from traditional physical file formats is reflected in the orientation of the document toward
defining form and function as opposed to a specification of the bits and bytes in an actual physical format. It is
important to state here that the use of a data abstraction in no way inhibits access to physical data or necessarily makes
such access inefficient. It merely provides a way of generalizing the data model and makes possible the specification of
a uniform interface for manipulation of a data set. The data abstraction allows future extensibility and provides for
conceptual simplicity while isolating machine and device dependence.

The contents of a CDF fall into two categories. The first is a series of records comprising a collection of variables
consisting of scalars, vectors, and n-dimensional arrays. The second is a set of attribute entries (metadata) describing
the CDF in global terms or specifically for a single variable. This dual function of CDF is what provides its "data set
independence." Both the data dictionary (attributes) and the data objects (variables) are combined into an integrated
data set. An important element of the CDF conceptual data abstraction is the "virtual" dimensional layer that allows
data objects that share a subset of the overall CDF dimensionality to be projected into the full dimensional space. This
capability is made available through the use of logical dimensional variances that indicate the subset of CDF
dimensions that are applicable.

How is CDF Used?

The origins of CDF date back to the development of the NASA Climate Data System at the National Space Science
Data Center (NSSDC). As such, it has had three main requirements driving its development.

1. Facilitate ingestion of data sets and data products into CDF.
2. Utilize standard common terminology (metadata) to describe the data sets.
3. Development of higher level applications (e.g., NSSDC Graphics System [NGS]).

The above requirements imply two classes of users for CDF. One user class performs primarily data acquisition and is
mainly involved in designing CDFs and the associated science metadata. The other user class builds high-level

! Programming reference manuals for C and Fortran users are provided as separate documents.

applications interacting with CDF at the programming level. CDF has two levels of access: one is through the
programming interface layer and the other is through a high-level toolkit written using the programming interface layer.

The toolkit provides utilities for creating new CDFs and for browsing existing CDFs. These are very useful for
architecturing a CDF and describing the metadata without using the programming level interfaces. The browsing tools
allow a quick look at CDF data sets and aid in CDF validation.

The CDF library comes with C, Java and Fortran Application programming Interfaces (APIs) and the APIs provide the
essential framework on which graphical and data analysis packages can be created. Perl APIs are also available as an
optional package for those who wish to develop CDF applications in Perl. The CDF library allows developers of CDF-
based systems to easily create applications that permit users to slice data across multidimensional subspaces, access
entire structures of data, perform subsampling of data, and access one data element independently regardless of its
relationship to any other data element. CDF data sets are portable across any platform supported by CDF. These
currently consist of VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha
(OSF/1 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AIX), HP 9000 series (HP-
UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000, Linux, Cygwin & QNX), and Macintosh (68K
& Power PC running MacOS 8.x, 9.x, X, or Linux).

How is CDF Useful to Me?

Hopefully, the answers to the first two questions have provided a basis for answering this question. If you still have
questions or would like to learn more about CDF, please refer to the CDF Frequently Asked Questions (FAQ) page
(http://nssdc.gsfc.nasa.gov/cdf/html/FAQ.html) for more detailed information about CDF. It is
important to understand that CDF has been designed to solve a number of data management and storage problems and
has shown itself to be quite flexible in storing a wide variety of data sets.

il

Chapter 1

Primer

1.1 Introduction

The CDF Primer is designed for scientists, researchers, programmers, and managers who want to learn about CDF
without reading through this entire document or the programming reference guides. The primer will address what CDF
is and how it can be used for storing and managing different types of data. A brief description of the tools and utilities
available with CDF, in addition to program and toolkit examples, will be given. More detailed descriptions of the
concepts presented herein are provided in the accompanying chapters of this document and the programming reference
guides.

1.2 Why Use CDF?

When people first hear the term CDF they intuitively think of data formats in the traditional sense of the word (i.e.,
messy/convoluted storage of data on disk or tape). CDF is more than just a format. CDF is a "self-describing" format
for managing data. In addition to the actual data being stored, CDF also stores user-supplied descriptions of the data,
known as metadata. This self-describing property allows CDF to be a generic, data-independent format that can store
data from a wide variety of disciplines.

In addition to being a self-describing data format, CDF is also a software library. The library routines are callable from
C and Fortran and allow the user to randomly access and manage data and metadata without regard to their physical
storage. This completely relieves the user of low-level I/O operations allowing more time for data analysis. The actual
format used to store the data and metadata is completely transparent to the user.

The term "CDF" is also used to refer to the physical files that the CDF library generates. A data set stored using the
CDF library is called a "CDF".

1.3 Conceptual Organization

An important feature of CDF is that it can handle data sets that are inherently multidimensional in addition to data sets
that are scalar. To do this, CDF groups data by "variables" whose values are conceptually organized into arrays. The
dimensionality of these variable arrays depends upon the data and is specified by the user when the CDF or a variable
is created. For scalar data, as an example, the array of values would be 0-dimensional (i.e., a single value); whereas for
image data the array would be 2-dimensional. Similarly, the array for volume data would be 3-dimensional. CDF
allows users to specify arrays of up to ten dimensions. The array for a particular variable is called a "variable record."

A collection of arrays, one for each variable, is referred to as a "CDF record." A CDF can, and usually does, contain
multiple CDF records. This is useful for data with repeated observations at different times.

Two types of variables may exist in a CDF: rVariables' and zVariables.” Every rVariable in a CDF must have the same
number of dimensions and dimension sizes. In the scalar data example the CDF's rVariables would be 0-dimensional,
whereas for the image data example the CDF's rVariables would be 2-dimensional. Figures 1.1 and 1.2 illustrate 0-
dimensional and 2-dimensional rVariables, respectively. zVariables may have a different number of dimensions and/or
dimension sizes than that of the rVariables in a CDF. Figure 1.3 illustrates several zVariables. Note that a CDF may
contain both rVariables and zVariables.> The term "variable" is used when describing a property that applies to both
rVariables and zVariables.

It is important to note that there is no single "correct" way to store data in a CDF. The user has complete control over
how the data values are stored in the CDF (within the confines of the variable array structure) depending on how the
user views the data. This is the advantage of CDF. Data values are organized in whatever way makes sense to the user.

1.4 Features of the CDF Library

The CDF library is a flexible and extensible software package that gives the user many options for creating and
accessing a CDF.

1.4.1 File Format Options

The CDF library gives the user the option to choose from one of two file formats in which to store the data and
metadata. The first option is the traditional CDF multi-file format. This file format is illustrated in Figure 1.4
(assuming a CDF containing four variables). The example.cdf file contains all of the control information and metadata
for the CDF. In addition to the .cdf file," a file exists for each variable in the CDF and contains only the data associated
with that variable. This is illustrated by the files example.v0 through example.v3. The second option is the single-file
format, the default format when a CDF file is created. As illustrated in Figure 1.5, the whole CDF file consists of only
a single example.cdf file. This file contains the control information, metadata, and the data values for each of the
variables in the CDF. Both formats allow direct access. The advantage of the single-file format is that it minimizes the
number of files one has to manage and makes it easier to transport CDFs across a network. The organization of the
data within the single file may, however, become somewhat convoluted, slightly increasing the data access time. The
multi-file format, on the other hand, clearly delimits the data from the metadata and is organized in a consistent fashion
within the files. Updating, appending, and accessing data are also done with optimum efficiency.

For multi-file format CDFs, certain restrictions are applied. They are:’
- Compression: Compression is not allowed for the CDF or any of its variables.
- Sparseness: Sparse records or arrays for variables are not allowed.

- Allocation: Pre-allocation of records or blocks of records is not allowed. For each variable, the maximum written
record is the last allocated record.

' The “r” stands for “regular.” rVariables are the type of variables that CDF has always supported. Perhaps
“traditional” would have been a better term.

% The “z” doesn’t stand for anything special. We just like the letter “z.”

3 This is generally not recommended. In those situations where z variables are necessary it is best to use all zVariables
than a mixture of rVariables and zVariables.

* This file referred to as the dotCDF file.

> These features are covered in the following sections.

- Deletion: Deletion of a single variable from a CDF is not allowed. Only deleting a whole CDF is possible.

Record rVariable rVariable . . . rVariable
Number 1 2 n
1 O O O
2 O O O
3 O O O
n O O O

Figure 1.1 Conceptual View of a CDF, 0-Dimensional rVariable

Record rVariable rVariable . . . rVariable

Number 1 2 n
1 a [a
[[[
[[[
I ([I
[MM [
2 [[[
[(10 [
[(1 [
I [I
[(T [
3 [([[
[(1] [
[[0 [
I [I
[(T [
n [I [
[[[
I ([I
[[[
[(M [

Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables

Record rVariable rVariable . . . rVariable
Number 1 2 n
1 a .d
[[-
[(M a
I -
[-
2 [.
[1M d
[(M -
I -
[-
3 [.0
[1M d
[(M -
I -
[-
n [.
[[.d
I (M -
[-
[-

Figure 1.3 Conceptual View of a CDF, zVariables

example.cdf

>=p0r—amZ

example.v0

> = > O

example.vl example.v2
D D
A A
T T
A A

example.v3

> = »> O

Figure 1.4 Multi-File Format

example.cdf

>HPO & PHPUOPADMZ

Figure 1.5 Single-File Format

1.4.2 Data Encoding Options

When creating a CDF, a user has the option of using any of the supported encodings: VAX, Sun, SGi Personal Iris and
Power Series, DECstation, DEC Alpha/OSF1, DEC Alpha/OpenVMS (D FLOAT, G FLOAT or IEEE FLOAT double-
precision flfloating-point), IBM RS6000 series, HP 9000 series, NeXT, PC, Macintosh, or network (XDR - eXternal
Data Representation). The created CDF may then be copied to any of the supported computers and read by the CDF
library. When a value is read from the CDF, the CDF library may be requested to decode the value into the encoding
of the computer being used or any of the other encodings (which may be desirable for various reasons). A CDF with
any of the supported encodings may be read from and written to on any supported computer.

143 Compression

Compression may be specified for a single-file CDF and the CDF library can be instructed to compress a CDF as it is
written to disk. This compression occurs transparently to the user. When a compressed CDF is opened, it is
automatically decompressed by the CDF library. An application does not have to even know that a CDF is compressed.
Any type of access is allowed on a compressed CDF. When a compressed CDF is closed by an application, it is
automatically recompressed as it is written back to disk.

The individual variables of a CDF can also be compressed. . The CDF library handles the compression and
decompression of the variable values transparently. The application does not have to know that the variable is
compressed as it accesses the variable's values.

Several different compression algorithms are supported by the CDF library. When compression is specified for a CDF
or one of its variables, the compression algorithm to be used must be selected. There will be trade-offs between the
different compression algorithms regarding execution performance and disk space savings.

The nature of the data in a CDF (or variable) will affect the selection of the best compression algorithm to be used.

1.4.4 Sparseness

Two types of sparseness are allowed for CDF variables: sparse records and sparse arrays. Sparse records are available
now - sparse arrays won't be available until a future CDF release. When a variable is specified as having sparse records,
only those records actually written to that variable will be stored in the CDF. This differs from variables without sparse
records in that for those variables every record preceding the maximum record written is stored in the CDF. For
example, if only the 1000th record were written to a variable without sparse records, the 999 preceding records would
also be written using a pad value. If sparse records had been specified for the variable, only the 1000th record would
be stored in the CDF (saving a considerable amount of disk space). Sparse records are ideal for variables containing
gaps of missing data.

1.4.5 Variable Data Access Options

A program can access variable data one value at a time or it can access an entire multidimensional array structure or
substructure spanning contiguous or non-contiguous record boundaries. The latter feature allows the user to perform
aggregate access or uniform subsampling of the data at greatly increased rates over traditional value by value access.

1.5 Organizing Your Data in a CDF

1.5.1 Variables

The first component of a CDF is the actual data, organized into arrays for the individual variables. CDF can
accommodate any type of data that can be organized into arrays. Two types of variables are supported: rVariables and
zVariables.

rVariables®

rVariables all have the same dimensionality (number of dimensions and dimension sizes). An example of the type of
data set that may be stored in a CDF's rVariables is shown in Table 1.1. Each record holds one value for each of the
four variables: Time, Longitude, Latitude, and Temperature. CDF can store scalar data in a "at" (0-dimensional)
representation such as this, but storage in this manner may hide fundamental relationships among the data values.
Consistent repetitions found in the data for this example suggest another way to organize the data set. Note that every
fourth record is an observation at the same point on Earth at different times. That fact is not immediately clear from
this representation of the data. Looking more closely, we note that only two differing values are recorded for Longitude
and, similarly, only two differing values are recorded for Latitude. This repetition suggests a 2-dimensional array
structure whose dimensions are defined by Longitude and Latitude. For each of the two Longitude values there are two
Latitude values. Time repeats for each Longitude/Latitude pair - the observations were taken simultaneously at the
longitude/latitude locations. Because of Time's repetition for Longitude/Latitude pairs, the number of Time values
specifies the number of records needed in the CDF. Each record conceptually contains a 2-dimensional array per
rVariable (Table 1.2). The array structure defines the dimensionality of the rVariables in the CDF. Although there are
four rVariables, the array dimensions and the sizes of those dimensions are determined only by Longitude and Latitude.
Temperature varies across the entire array while Time tells us how many records to expect. Therefore, the example,
when reduced as described, defines a CDF with 2-dimensional rVariables. The number of discrete values for each
rVariable that defines a dimension generates the size of that dimension. For example, Longitude has two unique
values so the dimension defined by Longitude has a size of two.

Record rVariables

Number Time Longitude Latitude Temperature
1 0000 -165 +40 20.0
2 0000 -165 +30 21.7
3 0000 -150 +40 19.2
4 0000 -150 +30 20.7
5 0100 -165 +40 18.2
6 0100 -165 +30 19.3
7 0100 -150 +40 22.0
8 0100 -150 +30 19.2
9 0200 -165 +40 19.9
10 0200 -165 +30 19.3
11 0200 -150 +40 19.6
12 0200 -150 +30 19.0
93 2300 -165 +40 21.0
94 2300 -165 +30 19.5
95 2300 -150 +40 18.4
96 2300 -150 +30 22.0

Table 1.1 Example Data Set - "Flat" Representation (0-Dimensional)

% Although rVariables are described here first, the trend among CDF users is toward CDFs containing only zVariables
(since zVariables can do everything rVariables can do and more). zVariables are described in the next section.

Adding another independent rVariable, for instance Pressure, poses no difficulty for the example. Temperature would
then be dependent on a specific Longitude, Latitude, and Pressure - a 3-dimensional array structure. In this 3-
dimensional example Longitude, Latitude, and Pressure define the number of dimensions for the rVariables in the CDF,
where the size of each dimension is determined by the number of discrete values contained in each of those rVariables.
Additional dependent rVariables would be stored in the same way as Temperature.

Although conceptually there is a 2-dimensional array structure for each rVariable in each record of the CDF, this would
not be an efficient way to store the data. For instance, the time for each record need only be stored once as opposed to
being stored four times as shown in each 2-dimensional array (Table 1.2). This problem is circumvented by specifying
"variances." For each rVariable there are variances associated with the array dimensions as well as the records.
"Record variance" indicates whether or not an rVariable has unique values from record to record in the CDF. Time
changes for each record so the record variance for Time is [TRUE]. One could also say that Time is record-variant.
Latitude and Longitude repeat their values from record to record so the record variance for each is [false]. Latitude and
Longitude are non-record-variant (NRV). The Temperature values change from record to record so they are record-
variant. The record variances for this example are shown in Table 1.3.

Record rVariables
Number Time Longitude Latitude Temperature
0000 — 0000 -165 - -150 +40 — +40 20.0 - 19.2
1 I I | | I | I I
0000 — 0000 -165 —-150 +30 — +30 21.7-20.7
0100 — 0000 -165 —-150 +40 — +40 18.2 -22.0
2 | I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.3-19.2
0200 — 0000 -165 —-150 +40 — +40 19.9-19.6
3 I I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.3-19.0
2300 - 0000 -165 —-150 +40 — +40 21.0-18.4
6 I I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.5-22.0

Table 1.2 Example CDF - 2-Dimensional Representation (Conceptual)

Similarly, the term "dimension variance" indicates whether or not an rVariable changes with respect to the CDF
dimensions. In the example above with 2-dimensional rVariables, the Longitude rVariable defines the first dimension
of the CDF with its values repeating along the second dimension so its dimension variances would be [TRUE,false].
The Latitude rVariable defines the second dimension of the CDF with its values repeating along the first dimension so
its dimension variances would be [false, TRUE]. Because the Temperature values change for each latitude/longitude
location, its dimension variances are [TRUE,TRUE]. Time does not change from one latitude/longitude location to
another, so its values are the same along both

dimensions. The dimension variances for Time would be [false,false]. The dimension variances for the above example
are shown in Table 1.3.

rVariables
Time Longitude Latitude Temperature
Record Variance TRUE false false TRUE
First Dimension Variance false TRUE false TRUE
Second Dimension Variance false false TRUE TRUE

Table 1.3 Example CDF - Specification for 2-Dimensional Representation

When the record and dimension variances have been defined correctly, the amount of physical storage needed for the
CDF is drastically reduced. In the above example, 2-dimensional arrays are not physically stored

for each rVariable in a CDF record. Instead, the physical storage for each rVariable consists of just one

value for Time in each CDF record, a single 1-dimensional array of values for the Longitude and Latitude rVariables
(in only the first CDF record), and a full 2-dimensional array of values for Temperature in each

CDF record. The actual physical storage (physical view) is shown in Table 1.4. The conceptual view of

the CDF, however, is still that of one 2-dimensional array per rVariable in each CDF record as shown in

Table 1.2 (the physically stored values are shown in boldface type).

Record rVariables
Number Time Longitude Latitude Temperature
+40 20.0 - 19.2
1 0000 -165 —-150 | | |
+30 21.7-20.7
18.2 -22.0
2 0100 | |
19.3-19.2
19.9-19.6
3 0200 | |
19.3-19.0
21.0-184
6 2300 | |
19.5-22.0

Table 1.4 Example CDF - 2-Dimensional Representation (Physical)

zVariables

zVariables are similar to rVariables in all respects except that each zVariable can have a different dimensionality. This
allows any set of variables to be stored in the same CDF without wasting space or creating confusion in how the
variables are logically viewed.

Consider a data set that consists of some number of images, each containing 1024 by 1024 pixels. The data set also
contains a palette that is used to map pixel values to the actual color/shade to be displayed. Palettes are also referred to
as lookup tables or color lookup tables. For this example assume that each image pixel is stored in an 8-bit byte and the
palette is a 1-dimensional array of 256 colors/shades. Indexing into the palette array with a pixel value gives the
appropriate color/shade to use.

10

Attempting to store the images and the palette using only rVariables would result in one of two undesirable situations.
If the CDF's rVariables had a dimensionality of 2:[1024,1024]" (to store the images), the palette would have to be
stored in a 1024 by 1024 array that does not make sense logically and would waste disk space regardless of how the
dimension variances are set. If the CDF's rVariables had a dimensionality of 3:[1024,1024,256], the images could be
stored in an rVariable having dimension variances T/TTF® and the palette could be stored in an rVariable having
dimension variances F/FFT. This would not waste any disk space but is not the intuitive way to store the data - nothing
in the data set is 3-dimensional.

Using zVariables to store the images and palette would solve both problems. The images would be stored in a
zVariable with dimensionality 2:[1024,1024] (and variances of T/TT) and the palette would be stored in a zVariable
with a dimensionality of 1:[256] (and variances of F/T). This would waste no disk space and logically makes sense.

The use of zVariables is recommended because of this added flexibility. Note that zVariables can always be used
instead of rVariables. In the rVariable example where temperature values were being stored, zVariables could also have
been used. Each zVariable would have the same dimensionality and their dimension variances would be used in the
same way as they were used for the rVariables.

An even better example of how zVariables are preferred over rVariables in certain situations involves the storage of 1-
dimensional arrays (vectors). Assume that five 1-dimensional arrays are being stored with dimension sizes of 2, 3, 5, 7,
and 25. Using rVariables with a dimensionality of 1:[25] would waste considerable space while using rVariables with
a dimensionality of 5:[2,3,5,7,25] and dimension variances of T/TFFFF, T/FTFFF, T/FFTFF, T/FFFTF, and T/FFFFT
would be quite confusing to deal with zVariables with dimensionalities of 1:[2], 1:[3], 1:[5], 1:[7], and 1:[25] would be
straight forward and efficient.

1.6 Attributes

The second component of a CDF is the metadata. Metadata values consist of user-supplied descriptive information
about the CDF and the variables in the CDF by way of attributes and attribute entries. Attributes can be divided into
two categories: attributes of global scope (gAttributes) and attributes of variable scope (vAttributes). gAttributes
describe the CDF as a whole while vAttributes describe some property of each variable (rVariables and zVariables) in
the CDF. Any number of attributes may be stored in a single CDF. The term "attribute" is used when describing a
property that applies to both gAttributes and vAttributes.

gAttributes can include any information regarding the CDF and all of its variables collectively. Such descriptions could
include a title for the CDF, data set documentation, or a CDF modification history. A gAttribute may contain multiple
entries (called gEntries). An example of this would be a modification history kept in the optional gAttribute, MODS.
This attribute could be specified at CDF creation time and a gEntry made regarding creation date. Any subsequent
changes made to the CDF, including additional variables, changes in min/max values, or modifications to variable
values could be documented by writing additional gEntries to MODS.

vAttributes further describe the individual variables and their values. Examples of vAttributes would include such
things as a field name for the variable, the valid minimum and maximum, the units in which the variable data values are
stored, the format in which the data values are to be displayed, a fill value for errant or missing data, and a description
of the expected order of data values: increasing or decreasing (monotonicity). The entries of a vAttribute correspond to
the variables in the CDF. Each rEntry corresponds to an rVariable and each zEntry corresponds to a zVariable. Sample
vAttribute rEntries for the Temperature rVariable from the example above are shown in Table 1.5.

7 The notation for dimensionality used here is <num-dims>:[<dim-sizes>] where <num-dims> is the number of
dimensions and <dim-sizes> is zero or more dimension sizes separated by commas.

¥ The notation for variances used here is <rec-vary>/<dim-varys> where <rec-vary> is the record variance, T (TRUE)
or F (false), and <dim-varys> is zero or more dimension variances.

11

The term "entry" is used when describing a property that applies to gEntries, rEntries, and zEntries.

vAttribute rEntry value
FIELDNAM “Recorded temperature”
VALIDMIN -40.0

VALIDMAX 50.0

SCALEMIN 17.0

SCALEMAX 24.0

UNITS “deg C”

FORMATS “F4.1”

MONOTON “Increasing”

FILLVAL -999.9

Table 1.5 vAttribute eEntries for the Temperature rVariable

1.7 CDF Toolkit

A set of utility programs are provided with the CDF distribution which allow a user to perform a variety of operations
on CDFs without having to write an application program. Each toolkit program is described in detail in Chapter 3.

The available toolkit programs are as follows:

CDFedit’ Allows the display, creation, and modification of attribute and variable
data in a CDF.
CDFexport' Allows the contents of a CDF to be exported to the terminal screen, a text

file, or another CDF. The CDF may be filtered in order to export a subset
of its contents.

CDFconvert Allows the format, encoding, majority, compression, and sparseness of a
CDF to be changed. It also can reorganize a fragmented CDF file to
make the file access more efficiently. In all cases a new CDF is created.
The original CDF is not modified.

SkeletonCDF"! Reads a specially formatted text file (called a skeleton table) and creates
a skeleton CDF. A skeleton CDF is complete except for record-variant
data.

SkeletonTable Reads a CDF and produces a specially formatted text file called a

skeleton table. The skeleton table may be modified and then input to
SkeletonCDF to create a skeleton CDF.

CDFinquire Displays the version of your CDF distribution, many of the configurable
parameters, and the default CDF toolkit qualifiers.

CDFstats Produces a report containing various statistics about the variables in a

? CDFedit has replaced CDFbrowse. The alias/symbol CDFbrowse still exists in the "definitions" file on UNIX/VMS
systems but now executes CDFedit in a browse-only mode.

' CDFexport has replaced CDFlist and CDFwalk.

' SkeletonCDF was previously named CDFskeleton

12

CDF.
CDFcompare Reports the differences between two CDFs.

CDFdir Produces a directory listing of a CDF's files. For a multi-file CDF the
variable files are listed in ascending numerical order.

1.8 Library Interface Routines

The core CDF library supports two programming interfaces, the Standard Interface and the Internal Interface. The
Standard Interface is similar to the interface provided with Version 1 of CDF with several additions for new features.
The Internal Interface is provided to allow additional functionality to be added to the CDF library without the need to
modify the Standard Interface. Those features, not available from the Standard Interface, are made available using the
Internal Interface (e.g., access to zVariables). The Internal Interface makes CDF extendable. The Standard and
Internal interfaces are callable from both C, Fortran, and Perl.

The C and the Fortran interfaces (APIs) are desibed in the CDF C Reference manual and the CDF Fortran reference
manual, respectively. The Perl interfaces are described in the Perl to CDF Interfaces document that is included in the
CDF Perl distribution package. The C, Fortran, and Java APIs are part of the standard CDF distribution package, but
the Perl APIs are available as an optional package. The Java APIs for the Unix'? and Linux platforms are also available
as an optional package. As of this writing, the Java APIs are not available for the VMS operating system.

1.8.1 Standard Interface

The Standard Interface consists of three categories of software functions that are utilized to manipulate the components
that make up a CDF: general CDF functions, rVariable functions, and attribute functions.

The general CDF functions are as follows:

Callable from C Callable from Fortran Purpose

CDFCreate() CDF _create() Creates a new CDF.

CDFopen() CDF _open() Opens an existing CDF.

CDFdoc() CDF _doc() Inquires version/release and copyright notice.
CDFinquire() CDF _inquire() Inquires rVariable dimensionality, etc.
CDFclose() CDF close() Closes a CDF.

CDFdelete() CDF _delete() Deletes a CDF.

CDFerror() CDF _error() Inquires error (status) code meaning.

The rVariable functions are as follows:

12 PC running CYGWIN or Mac OS X can be considered a UNIX box while running the CDF tool programs.

13

Callable from C Callable from Fortran Purpose

CDFvarCreate() CDF _var_create() Creates a rVariable.

CDFvarNum() CDF _var num() Determines a rVariable number.
CDFvarRename() CDF var rename() Renames a rVariable.
CDFvarlnquire() CDF var inquire() Inquires about a rVariable.
CDFvarPut() CDF _var put() Writes a rVariable value.
CDFvarGet() CDF _var_get() Reads a rVariable value.
CDFvarHyperPut() CDF _var_hyper put() Writes one or more rVariable values.
CDFvarHyperGet() CDF _var_hyper get() Reads one or more rVariable values.
CDFvarClose() CDF _var_close() Closes a rVariable.

CDFgetrVarsRecordData() CDF_getrVarsRecordData() Reads one full record for a group of rVariables.
CDFputrVarsRecordData() CDF_putrVarsRecordData() Writes one full record for a group of rVariables

The attribute functions are as follows:

Callable from C Callable from Fortran Purpose

CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr_rename() Renames an attribute.
CDFattrlnquire() CDF attr_inquire() Inquires about an attribute.
CDFattrEntrylnquire() CDF attr_entry inquire() Inquires about an attribute rEntry.
CDFattrPut() CDF attr_put() Writes an attribute rEntry.
CDFattrGet() CDF attr_get() Reads an attribute rEntry.

The Standard Interface may be used to access only rVariables and the vAttribute rEntries for rVariables.

1.8.2 Internal Interface

The Internal Interface consists of one routine: CDFlib when called from C and CDF lib when called from Fortran. The
Internal Interface is used to perform all CDF operations. (In reality the Standard Interface is implemented via the
Internal Interface.) The Internal Interface is used to add new CDF features (e.g., zVariables) without having to change
the Standard Interface.

The Internal Interface must be used to access zVariables and the vAttribute zEntries for zVariables, and it can be used

to access rVariables and their attributes. zVariable is a superset of rVariable and the use of zVariable over rVariable is
highly recommended.

1.9 CDF Java Interface

The CDF Java Application Programming Interfaces (APIs) are based on the core CDF library's Internal Interface., and
they support a near complete set of the Internal Interface functions. The Java APIs only support zVariables and treats
rVariables as zVariables. This is not a problem since zVariable is a superset of rVariable. In another words, with
zVariables, you can do everything with rVariables and more, but not vice versa.

For a complete description of the Java APIs, please refer to http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html.

1.10 Examples

14

In this section, sample programs of how to use the CDF library and toolkit will be presented. The same CDF will be
created two different ways: by using just the CDF library from a C program (using stdard interface) and by using the
CDF library with the SkeletonTable toolkit program and a Fortran program (using standard interface).

Sample Java programs are also included in Appendix D that describe how to create and read a CDF file using Java

APIs. Appendix D also conatins sample C programs that describe how to create variables and add data to them using
both the standard interface and the internal interface.

1.10.1 Creating a CDF, the Hard Way (But Not That Hard)

The first example program, written in C, creates a CDF with 2-dimensional rVariables using only CDF library function
calls. The CDF created will contain the data and metadata values used in the example presented earlier in this chapter
(minus some of the vAttributes/rEntries). An input file, example.dat, whose format is similar to that of Table 1.1 will
be read and its data values written into the CDF.

/**

*
* NSSDC/CDF Create an example CDF (without using a skeleton table).
*

* Version 1.0, 5-Jan-94, CDF, Inc.

*

* Modification history:

*

* V1.0 5-Jan-94, Joe Programmer Original version.
:***/

/**

Note (s) :

*
*
*
* This program would have to be modified to run on a DEC Alpha because the
* C language "long' data type is 8 bytes rather than 4 (the CDF data type of
* CDF_INT4 is always 4 bytes).

*

*

***/

/**

* Necessary include files.
**/

#include <stdio.h>
#include <stdlib.h>

#include "cdf.h"

/**

* Status handler.

**/

void StatusHandler (status)
CDFstatus status;

{
char message [CDF_ERRTEXT LEN+1];

15

if (status < CDEF_WARN) {

printf ("An error has occurred, halting...\n");
CDFerror (status, message);
printf ("%s\n", message);

exit (status);
}
else
if (status < CDF OK) {
printf ("Warning, function may not have completed as expected...\n");
CDFerror (status, message);
printf ("%s\n", message);
1
else
if (status > CDF OK) {
printf ("Function completed successfully, but be advised that...\n");
CDFerror (status, message);
printf ("%s\n", message);
1

return;

}

/**

* MAIN.
**/

main () {
CDFid id; /* CDF identifier. */
CDFstatus status; /* CDF completion status. */
FILE *fp; /* File pointer - used to read input data file. */
long numDims = 2; /* Number of dimensions, rVariables. */
static long dimSizes[2] = {2,2}; /* Dimension sizes, rVariables. */
long dimVarys|[2]; /* Dimension variances. */
long indices[2]; /* Dimension indices. */
long recNum; /* Record number. */
long attrNum; /* Attribute number. */
long TimeVarNum; /* 'Time' rVariable number. */
long LonVarNum; /* 'Longitude' rVariable number. */
long LatVarNum; /* 'Latitude' rVariable number. */
long TmpVarNum; /* 'Temperature' rVariable number. */
long Time; /* 'Time' rVariable value. */
float Lat; /* 'Latitude' rVariable value. */
float Lon; /* 'Longitude' rVariable value. */
float Tmp; /* 'Temperature' rVariable value. */
long TimeValidMin = 0; /* 'Time' valid minimum (0000). */
long TimeValidMax = 2359; /* 'Time' valid maximum (2359). */
float LonValidMin = -180.0; /* 'Longitude' valid minimum. */
float LonValidMax = 180.0; /* 'Longitude' valid maximum. */
float LatValidMin = -90.0; /* 'Latitude' valid minimum. */

16

float LatValidMax 90.0; /* 'Latitude' valid maximum. */

float TmpValidMin = -40.0; /* 'Temperature' valid minimum. */
float TmpValidMax 50.0; /* 'Temperature' valid maximum. */

/**

* Create the CDF.

**/

status = CDFcreate ("examplel", numDims, dimSizes, NETWORK ENCODING,
ROW _MAJOR, &id);
if (status != CDF_OK) StatusHandler (status);

/**

* Create rVariables.
**/

dimVarys[0] = NOVARY;

dimVarys([1] NOVARY;

status = CDFvarCreate (id, "Time", CDF _INT4, 1L, VARY, dimVarys,
&TimeVarNum) ;

if (status != CDF_OK) StatusHandler (status);

dimVarys[0] VARY;

dimVarys[1l] = NOVARY;

status = CDFvarCreate (id, "Longitude", CDF REAL4, 1L, NOVARY, dimVarys,
&LonVarNum) ;

CDF _OK) StatusHandler (status);

if (status !

dimVarys[0] = NOVARY;

dimVarys[1l] = VARY;

status = CDFvarCreate (id, "Latitude", CDF _REAL4, 1L, NOVARY, dimVarys,
&LatVarNum) ;

CDF _OK) StatusHandler (status);

if (status !

dimVarys[0] = VARY;

dimVarys[l] = VARY;

status = CDFvarCreate (id, "Temperature", CDF REAL4, 1L, VARY, dimVarys,
&TmpVarNum) ;

if (status != CDF_OK) StatusHandler (status);

/**

* Create attributes.
**/

status = CDFattrCreate (id, "TITLE", GLOBAL SCOPE, &attrNum);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMIN", VARIABLE SCOPE, &attrNum);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMAX", VARIABLE SCOPE, &attrNum);
if (status != CDF _OK) StatusHandler (status);

/**

* Write TITLE gAttribute gEntry.
**/

17

status = CDFattrPut (id, CDFattrNum(id,"TITLE"), OL, CDF CHAR, 50L,
"An example CDF (1). ")
if (status != CDF _OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Time' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMin);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMax);
if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Longitude' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMin);
if (status != CDF _OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMax);
if (status != CDF _OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Latitude' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMin);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMax);
if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Temperature' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMin) ;

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMax) ;

if (status != CDF_OK) StatusHandler (status);

/**

* Read input values for rVariables and write them to the CDF. Not

18

every value must be written to the CDF - many of the values are redundant.
The 'Time' wvalue only has to be written once per CDF record (every 4 input
records). The 'Longitude' and 'Latitude' values are only written to the

first CDF record (and only at the appropriate indices). Each 'Temperature'

value read is written to the CDF.
***/

b S S

fp = fopen ("example.dat"™, "r");

if (fp == NULL) {
printf ("Error opening input file.\n");
exit (-1);

for (recNum = 0; recNum < 24; recNum++)
for (indices[0] = 0; indices[0] < 2; indices[0]++) {
for (indices[1l] = 0; indices[l] < 2; indices[1l]++) {
fscanf (fp, "%d %$f %$f %f", &Time, &Lon, &Lat, &Tmp);

if (indices[0] == 0 && indices[1l] == 0) {
status = CDFvarPut (id, TimeVarNum, recNum, indices, &Time);
if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[1l] == 0) {
status = CDFvarPut (id, LonVarNum, recNum, indices, &Lon);
if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[0] == 0) {
status = CDFvarPut (id, LatVarNum, recNum, indices, &Lat);
if (status != CDF_OK) StatusHandler (status);

}

status = CDFvarPut (id, TmpVarNum, recNum, indices, &Tmp);

if (status != CDF_OK) StatusHandler (status);

fclose (fp);

/**

* Close CDF.

**/

status = CDFclose (id);
if (status != CDF_OK) StatusHandler (status);

return;

19

1.10.2 Creating a CDF, an Easier Way

The CDF toolkit program SkeletonCDF is provided through the CDF distribution to make the task of creating a CDF
easier for a programmer. SkeletonCDF reads a specially formatted text file called a skeleton table and generates a
skeleton CDF. Everything about a CDF can be specified in a skeleton table except data values for variables that vary
from record to record (record-variant). The toolkit program SkeletonTable is also provided. It reads an existing CDF
and produces a skeleton table. The skeleton table for the CDF created using only the CDF library in Section 1.10.1
would be as follows.

! Skeleton table for the "example" CDF.
! Generated: Wed 5 Jan 1994 10:53:58

#header

CDF NAME: examplel
DATA ENCODING: NETWORK
MAJORITY: ROW
FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

4/0 1 2 1/z 2 2 2

#GLOBALattributes
! Attribute Entry Data
! Name Number Type Value
| ——_ —_———— e

"TITLE" 1: CDF CHAR { "An example CDF (1). "o

- " " }

#VARIABLEattributes

"VALIDMIN"

"VALIDMAX"
#variables
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| e —_ —_———— e e

"Time" CDF_INT4 1 T FF

! Attribute Data

! Name Type Value

—_——— e _—

"VALIDMIN" CDF_INT4 { 0}
"VALIDMAX" CDF_INT4 { 2359 }

20

! Variable

Data

Number Record Dimension
! Name Type Elements Variance Variances
| e = —_———— e e
"Longitude" CDF_REAL4 1 F T F
! Attribute Data
! Name Type Value
| e —_ —_— e —_—
"VALIDMIN" CDF_REAL4 { -180.0 }
"VALIDMAX" CDF REAL4 { 180.0 }
! NRV values follow...
[1, 1 1 = -165.0
[2, 1] =-150.0
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| e —— = —_———— e e
"Latitude" CDF_REAL4 1 F F T
! Attribute Data
! Name Type Value
| e —_ —_——— e — =
"VALIDMIN" CDF_REAL4 { -90.0 }
"VALIDMAX" CDF_REAL4 { 90.0 }
! NRV values follow...
[1, 1 1 = 40.0
[1, 2 1 = 30.0
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
—_———— e e e
"Temperature" CDF_REAL4 1 T T T
! Attribute Data
! Name Type Value
| e —_ —_——— e — =
"VALIDMIN" CDF_REAL4 { -40.0 }
"VALIDMAX" CDF_REAL4 { 50.0 }
#end

Assuming that SkeletonCDF was used to create a CDF containing the metadata and data in the above skeleton table, the
following Fortran program would be used to complete the creation of the CDF.

21

PROGRAM exampleSKT

C __
C
C NSSDC/CDF Create an example CDF (using skeleton table).
C
C Version 1.0, 5-Jan-94, CDF, Inc.
C
C Modification history:
C
C V1.0 5-Jan-94, Joe Programmer Original version.
C
C __
INCLUDE '../../include/cdf.inc'
INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! CDF completion status.
INTEGER*4 1lun ! Logical unit number for input data file.
INTEGER*4 indices (2) ! Dimension indices.
INTEGER*4 rec num ! Record number.
INTEGER*4 time var num ! 'Time' rVariable number.
INTEGER*4 tmp var num ! '"Temperature' rVariable number.
INTEGER*4 time ! 'Time' rVariable value.
REAL*4 lat ! '"Latitude' rVariable value.
REAL*4 lon ! 'Longitude' rVariable value.
REAL*4 tmp ! '"Temperature' rVariable value.
DATA lun/1/
C __
C Open the CDF.
C __
CALL CDF open ('example2', id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
C __
C Determine rVariable numbers.
C __
time var num = CDF var num (id, 'Time')
IF (time_var num .LT. CDF _OK) CALL StatusHandler (status)
tmp var num = CDF var num (id, 'Temperature')
IF (tmp var num .LT. CDF OK) CALL StatusHandler (status)
C __

C Read input values for rVariables and write them to the CDF. Not
C every value must be written to the CDF - many of the values are redundant.
C The 'Time' value only has to be written once per CDF record (every 4 input

22

C records). The 'Longitude' and 'Latitude' values are not written at all
C because they had been specified in the skeleton table. Each 'Temperature'
C value read is written to the CDF.

C __
OPEN (lun, FILE='example.dat', ERR=99)
DO rec num = 1, 24
DO x1 =1, 2
DO x2 =1, 2
indices (1) = x1
indices (2) = x2
READ (lun, *, ERR=99) time, lon, lat, tmp
IF (indices(l) .EQ. 1 .AND. indices(2) .EQ. 1) THEN
CALL CDF var put (id, time var num, rec num, indices,
time, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END IF
CALL CDF var put (id, tmp var num, rec num, indices,
tmp, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END DO
END DO
END DO
CLOSE (lun, ERR=99)
C __
C Close CDF
C __
CALL CDF close (id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
STOP
C __
C Input file error handler.
C __
99 WRITE (6,101)
101 FORMAT (' ', 'Error reading input file')
STOP
END
C __
C Status handler.
C __

SUBROUTINE StatusHandler (status)
INTEGER*4 status

23

INCLUDE '../../include/cdf.inc'
CHARACTER message*(CDFiERRTEXTiLEN)

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (' ', 'Error (halting)...")
CALL CDF error (status, message)
WRITE (6,11) message
11 FORMAT (' ',A)
STOP
ELSE
IF (status .LT. CDF OK) THEN
WRITE (6,12)
12 FORMAT (' ', '"Warning...')
CALL CDF _error (status, message)
WRITE (6,13) message
13 FORMAT (' ',A)
ELSE
IF (status .GT. CDF_OK) THEN
WRITE (6,14)
14 FORMAT (' ', 'Be advised that...')
CALL CDF error (status, message)
WRITE (6,15) message
15 FORMAT (' ',A)
END IF
END IF
END IF

RETURN
END

The CDF was opened (since it already existed) and the values for only the Time and Temperature rVariables were
written to the CDF. All of the other functions performed by the program in Section 1.10.1 were done by the
SkeletonCDF program when it read the skeleton table.

24

Chapter 2

Concepts

2.1 CDF Library

The CDF library is the only way to access a CDF. Various properties of the CDF library are described in the following
sections.

2.1.1 Interfaces

Two interfaces to the CDF core library exist for C and Fortran programs. They are described in the following sections.
For CDF Java Interface, see http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html for a complete description.

Standard Interface

The Standard Interface provides a standard set of routines with which to access a CDF. Not all CDF features are
available with the Standard Interface. The Internal Interface must be used to perform operations not available with the
Standard Interface routines (e.g., access to zVariables). The Standard Interface is callable from both C and Fortran
applications. Table 2.1 lists the routines available when using the Standard Interface. Each routine is described in
detail in the corresponding programmer's guide.

Internal Interface
The Internal Interface may be used to perform all supported CDF operations. The Internal Interface must be used to

perform those operations not available with the Standard Interface. Table 2.2 lists the routines available when using the
Internal Interface. Each is described in detail in the corresponding programmer's guide.

25

Callable from C Callable from Fortran

Purpose

CDFCreate() CDF _create()
CDFopen() CDF _open()
CDFdoc() CDF_doc()
CDFinquire() CDF inquire()
CDFclose() CDF close()
CDFdelete() CDF _delete()
CDFerror() CDF _error()
CDFvarCreate() CDF _var_create()
CDFvarNum() CDF_var num()
CDFvarRename() CDF var rename()
CDFvarlnquire() CDF var_inquire()
CDFvarPut() CDF _var_put()
CDFvarGet() CDF _var_get()
CDFvarHyperPut() CDF _var_hyper_put()
CDFvarHyperGet() CDF _var_hyper_get()
CDFvarClose() CDF _var_close()

CDFgetrVarsRecordData()
CDFgetzVarsRecordData()
CDFputrVarsRecordData()
CDFputzVarsRecordData()

CDF _getrVarsRecordData()
CDF _getzVarsRecordData()
CDF _putrVarsRecordData()
CDF _putzVarsRecordData()

Creates a new CDF.

Opens an existing CDF.

Inquires version/release and copyright notice.
Inquires rVariable dimensionality, etc.
Closes a CDF.

Deletes a CDF.

Inquires error (status) code meaning.

Creates a rVariable.

Determines a rVariable number.
Renames a rVariable.

Inquires about a rVariable.

Writes a rVariable value.

Reads a rVariable value.

Writes one or more rVariable values.
Reads one or more rVariable values.
Closes a rVariable.

Reads a full record data for a group of rVariables.

Reads a full record data for a group of zVariables.
Writes a full record data for a group of rVariables.
Writes a full record data for a group of zVariables.

CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr_rename() Renames an attribute.
CDFattrlnquire() CDF attr_inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF attr entry inquire() Inquires about an attribute rEntry.
CDFattrPut() CDF _attr put() Writes an attribute rEntry.
CDFattrGet() CDF attr get() Reads an attribute rEntry.
Table 2.1 Standard Interface Routines
Callable from C Callable from Fortran Purpose
CDFlib() CDF _lib() Performs all available operations that can be found in

the CDF C and Fortran reference manuals.

Table 2.2 Internal Interface Routines

CDF's IDL Interface

The CDF distribution contains an interface that allows full access to the CDF library (and hence CDFs) from within
IDL. CDF's IDL interface consists of a set of functions that mirror the functions in the Standard and Internal interfaces

for C and Fortran applications. CDF's IDL interface is described in Appendix B.

IDL also provides its own interface to the CDF library (as well as other data formats) that differs from CDF's IDL
interface. The differences are mainly syntactic with the functionality of the two interfaces being essentially the same.
IDL's documentation describes their built-in CDF interface. Another difference between the two interfaces is that
CDF's IDL interface is only available on those computers that support dynamic linking. Appendix B lists the

computers on which this is the case.

26

2.1.2 CDF Modes

Once a CDF has been opened (or created and not yet closed), the CDF library may be configured to act on that CDF in
one or more modes. These modes are specified independently for each open CDF.

Read-Only Mode

A CDF may ©be placed in read-only mode via the Internal Interface using the
<SELECT ,CDF_READONLY MODE > operation'. Only read access will be allowed on the CDF - all attempts to
modify the CDF will fail. A CDF may be toggled in and out of read-only mode any number of times (Note that
attempts to modify a CDF may also fail if insufficient access privileges exist for the CDF - the file system enforces this
access.)

zMode

A CDF may be placed into zMode? via the Internal Interface using the <SELECT ,CDF_zMODE > operation. When
in zMode a CDF's rVariables essentially disappear and are replaced by corresponding zVariables.” Likewise, the
rEntries for a vAttribute become zEntries (because they are now associated with zVariables). While in zMode most
operations involving rVariables/rEntries will fail. (Some inquiry operations will be allowed. For example, inquiring the
number of rVariables is allowed [but will always be zero].) When zMode is used, the number of variables remains the
same - rVariables simply change into zVariables. Note that the existing contents of the CDF are not changed - the CDF
simply appears different.

Each new zVariable has the same exact properties as the corresponding (hidden) rVariable except for dimensionality
and variances. The data specification (data type and number of elements), pad value, etc. stay the same. The
dimensionality/variances of each zVariable are dependent on which zMode is currently being used: zMode/1 or
zMode/2. In zMode/1 the dimensionality/variances stay exactly the same. In zMode/2, however, those dimensions
with a false variance (NOVARY) are eliminated. Consider a CDF with an rVariable dimensionality of 2:[180,360]*
containing the following rVariables.

rVariable Name Variances
EPOCH T/FF’
LATITUDE T/TF
LONGITUDE T/FT
HUMIDITY T/TT

If this CDF were to be placed into zMode/1, the following zVariables would replace the existing rVariables.

rVariable Name Dimensionality Variances
EPOCH 2:[180,360] T/FF
LATITUDE 2:[180,360] T/TF
LONGITUDE 2:[180,360] T/FT
HUMIDITY 2:[180,360] T/TT

' This notation is used to specify a function to be performed on an item. The syntax is <function_,item >.

% There are actually two types of zMode — read on.

? In a future release of CDF, support for rVariables will be eliminated. zMode is provided to ease the transition from
rVariables to the more exible zVariables. rVariables are essentially a subset of zVariables.

* This notation is used throughout this document. In this case there are two dimensions whose sizes are 180 and 360.
Adimensionality of zero is represented as 0:[].

> This notation is also used throughout this document. The record variance is before the slash and the dimension
variances.

27

Note that the dimensionality of of each zVariable is the same as it was for the rVariables in the CDF. However, if
zMode/2 were used, the following zVariables would replace the existing rValues.

rVariable Name Dimensionality Variances
EPOCH 0:[] T/
LATITUDE 1:[180] T/T
LONGITUDE 1:[360] T/T
HUMIDITY 2:[180,360] T/TT

In this case the false dimensional variances were removed (which decreased the dimensionality in several of the
variables).

A CDF can be placed into or taken out of zMode any number of times while it is open. Each time the zMode is
changed for a CDF, it would be best to think of the CDF as being closed and reopened in that zMode. The numbering
of variable/entries may or may not be as you would expect (and the scheme used could change in a future release of
CDF). Most applications will simply select a zMode immediately after opening a CDF. (zMode being off is the default
if a zZMode is not selected.)

NOTE: Using zMode does not change the contents of a CDF. A CDF containing rVariables will appear to contain
only zVariables when in zMode. If the same CDF is then opened without using zMode, the rVariables will still exist.

-0.0 to 0.0 Mode

The floating-point value -0.0 is legal on those computers which use the IEEE 754 floating-point representation (e.g.,
UNIX-based computers, the Macintosh, and the PC) but is illegal on VAXes and DEC Alphas running OpenVMS.
Attempting to use -0.0 results in a reserved operand fault on a VAX and a high performance arithmetic fault on a DEC
Alpha running OpenVMS. Because of this the CDF library can be told to convert -0.0 to 0.0 when read from or written
to a CDF. When reading from a CDF the values physically stored in the CDF are not modified - only the values
returned to an application are converted. When writing to a CDF the values physically stored are modified - -0.0 is
converted to 0.0 before being written to the CDF. This mode is available on all supported computers but is only really
necessary on VAXes and DEC Alphas running OpenVMS. The CDF library is told to convert -0.0 to 0.0 for a CDF via
the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0 MODE > operation. When this mode is disabled, a
warning (NEGATIVE FP ZERO) is returned when -0.0 is read from a CDF (and the decoding is that of a VAX or
DEC Alpha running OpenVMS) or written to a CDF (and the encoding is that of a VAX or DEC Alpha running
OpenVMS).

2.1.3 Limits

Open CDFs

The only limit on the number of CDFs that may be open simultaneously is the operating system's limit

on the number of open files that an application may have. Each open CDF will always have at least one associated

open file (the dotCDF file). The CDF library will open and close the variable files of a multi-file CDF as needed (see
Sections 2.3.3 and 2.3.4).

2.14 Scratch Files

The CDF library will make use of scratch files when necessary. These scratch files are associated with an open CDF.
Scratch files are used instead of core memory in an effort to prevent memory limitation problems (especially on the
Macintosh and PC). The following types of scratch files are used.

28

Staging The staging scratch file is used when a CDF contains compressed variables. As each
variable is accessed, a portion of the staging scratch file is allocated to hold a specific
number of uncompressed records for that variable. The number of records allocated
depends on the variable's blocking factor (see Section 2.3.12). The staging scratch file is
also used (when necessary) with variables having sparse records. If the records being
written are not first allocated, the staging scratch file will be used to minimize the
indexing overhead (see Section 2.2.7) by trying to keep consecutive records contiguous in
the dotCDF file.

Compression The compression scratch file is used when writing to a compressed variable in a CDF.
Because the CDF library does not know how well a block of variable records will
compress, the compression algorithm first writes the compressed block to the compression
scratch file. The compressed block is then copied to the dotCDF file. Note that when
reading a compressed variable, a compressed block of records is decompressed directly to
the staging scratch file because the CDF library knows the size of the uncompressed block
of records.

Uncompressed dotCDF When overall compression is specified for a CDF, the CDF library maintains an
uncompressed version of the dotCDF file as a scratch file.

By default, these scratch files are created in the current directory. On VMS systems the logical name CDF$TMP can be
defined with an alternate directory in which to create scratch files. On UNIX and MS-DOS systems the environment
variable CDF TMP would be used. An application can also select a directory to be used for scratch files with the
<SELECT ,SCRATCHDIR > operation of the Internal Interface (which will override a scratch directory specified
with CDF$TMP/CDF TMP).

The caching scheme used by the CDF library (see Section 2.1.5) affects how these scratch files can impact
performance. On machines with large amounts of core memory available, the cache size of a scratch files can be set
high enough to result in no blocks actually being written (paged out) to that file. In that case, the scratch file is more
like an allocated block of core memory.

2.1.5 Caching Scheme

The CDF library reads and writes to open files in 512-byte blocks. A cache of 512-byte memory buffers is maintained
by the CDF library for each open file. The CDF library attempts to keep in the cache the set of file blocks currently
being accessed. This results in fewer actual I/O operations to the file if repeated accesses to these blocks would occur.
When the cache is completely full and a new block of the file is accessed, one of the cache buffers is written back to the
file (if it was modified) and the new block is read into that cache buffer (unless the file is being extended in which case
the cache buffer is simply cleared). This process is known as paging. By optimizing the number of cache buffers for a
file, improved performance can be achieved. There is a tradeoff between having too few cache buffers and having too
many. Having too few cache buffers will cause excessive paging while having too many cache buffers may slow
performance because of the overhead involved in maintaining the cache (although this is very rare). Having too many
cache buffers may also cause problems on machines having limited memory such as the PC and Macintosh.

The CDF library attempts to choose optimal default cache sizes based on a CDF's format and the operating system
being used. This is difficult because the CDF library does not know how an application will access a CDF. For that
reason an application may specify, via the Internal Interface, the number of cache buffers to be used for a file. The
number of cache buffers may be changed as many times as necessary while a file is open (the first time will override
the default used by the CDF library). Default cache sizes may be configured for your CDF distribution when it is built
and installed. Consult your system manager for the values of these defaults (or use the CDFinquire toolkit program).

The situations in which it will be necessary to specify a cache size will depend on how a CDF is accessed. For

example, consider a variable in a multi-file, row-major CDF having a dimensionality of 2:[10,64], a data specification
of CDF REALS/1, and variances of T/TT. This variable definition results in each record of the variable being spread

29

across 10 file blocks with the second dimension varying the fastest (since the CDF's variable majority is row-major). If
single value reads were used to access this variable (see Section 2.3.16), only one cache buffer would be necessary for
the variable file if the second dimension were incremented the fastest (i.e., [1,1], [1,2], ..., [10,63], [10,64]). This is
because the values of a record would be accessed sequentially from the first block to the last block. If, however, the
first dimension were incremented the fastest (i.e., [1,1], [2,1], ..., [9,64], [10,64]), 10 cache buffers would improve
performance. The values of a record are not being accessed sequentially but rather each read would be from a different
block. Since the reads would be spread access 10 blocks, having (at least) 10 cache buffers would be optimal.

A similar situation arises when accessing standard variables in a single-file CDF. If values are accessed for each
variable at a particular record number, then performance will be improved by setting the number of cache buffers for
the dotCDF file to be equal to (or greater than) the number of variables. This is because the variable values will most
likely be located in that many different file blocks for a particular record number.

The Internal Interface is used to select and confirm the cache sizes being used for various files by the CDF library.
Confirming a cache size (if it has not been explicitly selected) will determine the default being used. The operations
used for each type of file are shown in Table 2.3.

NOTE: The default cache sizes used by the CDF library are fairly conservative in order to minimize the

problems that can arise due to memory limitations (especially on computers having limited memory such as the PC and
Macintosh). If the performance of your application is critical, it is very important to experiment with using larger
cache sizes. Significant gains in performance can be achieved with the proper cache sizes. It is also important to
allocate records for uncompressed variables. This will reduce the fragmentation that can occur in the dotCDF file
(which degrades performance because of the increased indexing that occurs). Allocating variable records is described in
Section 2.3.12.

File type Selecting Confirming

dotCDEF file° <SELECT ,CDF CACHESIZE > <CONFIRM_,CDF CACHESIZE >
rVariable file <SELECT ,rVAR CACHESIZE > <CONFIRM_,rVAR CACHESIZE >
All rVariable files <SELECT ,rVARs CACHESIZE > <CONFIRM_,rVARs CACHESIZE >
zVariable file <SELECT ,zZVAR CACHESIZE > <CONFIRM ,zVAR CACHESIZE >
All zVariable files <SELECT ,zVARs CACHESIZE > <CONFIRM ,zVARs CACHESIZE >
Staging scratch file <SELECT_,STAGE_CACHESIZE > <CONFIRM ,STAGE_CACHESIZE >

Compression scratch file <SELECT ,COMPRESS CACHESIZE > <CONFIRM ,COMPRESS CACHESIZE >

Table 2.3 Cache Size Operations, Internal Interface

2.2 CDFs

The following sections describe various aspects of a CDF.

2.2.1 Accessing

Only Version 2 CDFs may be accessed with the current CDF distribution. Version 1 CDFs must be converted to
Version 2 CDFs using the CDFconvert program in a CDF distribution prior to CDF V2.5 before they will be readable.

All supported CDF operations are available using the Internal Interface. A subset of these operations are available
using the Standard Interface. The Obsolete Interface is no longer supported. (Applications written for CDF Version 1
must be ported to the Standard or Internal Interface of CDF Version 2.)

S This alos applies to the uncompressed CDF that is maintained as a scratch file.

30

2.2.2 Creating

A CDF must be created by the CDF library. In a C application CDFs are created using either the CDFcreate function
(Standard Interface) or the <CREATE , CDF > operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are created using either the CDF create subroutine (Standard Interface) or the <CREATE , CDF >
operation of the CDF lib function (Internal Interface).

2.2.3 Opening

An application must open an existing CDF before access to that CDF is allowed by the CDF library. In a C application
CDFs are opened using either the CDFopen function (Standard Interface) or the <OPEN ,CDF > operation of the
CDFlib function (Internal Interface). In a Fortran application CDFs are opened using either the CDF open subroutine
(Standard Interface) or the <OPEN _, CDF_> operation of the CDF lib function (Internal Interface).

2.24 Closing

It is absolutely essential that a CDF that has been created or modified by an application be closed before the program
exits. If the CDF is not closed it will in most cases be corrupted and unreadable. This is because the cache buffers
maintained by the CDF library will not have been written to the CDF file(s). An existing CDF that has been opened
and only read from should also be closed. In a C application CDFs are closed using either the CDFclose function
(Standard Interface) or the <CLOSE ,CDF > operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are closed using either the CDF close subroutine (Standard Interface) or the <CLOSE ,CDF >
operation of the CDF lib function (Internal Interface).

2.2.5 Deleting

An open CDF may be deleted at any time. The dotCDF file is deleted along with any variable files if a multi- file CDF.
Note that if the CDF is corrupted and cannot be opened by the CDF library you will have to delete the CDF file(s)
manually using the capabilities of the operating system being used. In a C application CDFs are deleted using either
the CDFdelete function (Standard Interface) or the <DELETE ,CDF > operation of the CDFlib function (Internal
Interface). In a Fortran application CDFs are deleted using either the CDF delete subroutine (Standard Interface) or the
<DELETE_,CDF_> operation of the CDF lib function (Internal Interface).

2.2.6 Naming

The file name specified when opening or creating a CDF can be any legal file name for the operating system being
used. This includes logical symbols on VMS systems and environment variables on UNIX systems. Trailing blanks
are also allowed but will be ignored. This is so Fortran applications do not have to be concerned with the trailing
blanks of a Fortran CHARACTER variable. (C character strings use terminating NUL characters.)

In almost all cases when a CDF file name is specified, the .cdf extension should not be appended.” (It will be appended
automatically by the CDF library.) The exception to this is when a user has renamed an existing CDF with a different
extension or with no extension (for whatever reason). When a CDF is opened, the CDF library first appends the .cdf
extension to the file name specified and then checks to see if that file exists.® If not, the CDF library will also check to
see if a file exists whose file name is exactly as specified (without .cdf appended). If this is the case, the CDF must be
single-file. If the CDF is multi-file, an error occurs since the CDF library would have no idea as to how the variable

7 6The file of a CDF having an extension of .cdf is referred to as the dotCDF file.

8 Actually, the CDF library will check several possible extensions: .cdf, .cdf;1, .CDF, and .CDF;1. These extensions
are checked because some CD-ROM drivers (primarily on UNIX machines) do peculiar things when making the files
(e.g., CDFs) on a CD-ROM visible.

31

files had been renamed. Note also that the CDF library always appends .cdf to the file name specified when creating a
CDF.

NOTE: The CDF toolkit programs will in some cases not recognize a CDF if it does not have an extension
of .cdf.’

2.2.7 Format

There are two CDF formats: multi-file and single-file. The choice of which format to use will depend on how the CDF
is to be accessed. Note that the CDFconvert toolkit program can be used to change the format of an existing CDF
(creating a new CDF with the desired format).

The default format for a created CDF was determined when your CDF distribution was built and installed. Consult your
system manager for this default. In a user application, the Internal Interface must be used to change the format of a
CDF. The format of an existing CDF can be changed only if no variables have been created in the CDF. If the
SkeletonCDF toolkit program is used to create a CDF, the format is specified in the skeleton table (see Section 3.8).

A CDF's format is changed by using the <PUT ,CDF FORMAT > operation of the Internal Interface.

Single-File CDFs

A single-file CDF (SINGLE FILE) consists of only one file (with extension .cdf). This file is referred to as the
dotCDF file. The dotCDF file contains the control information for the entire CDF, the attribute entry data, and all of
the variable data. An indexing scheme is used to provide efficient access to variable records.

Indexing Scheme. In single-file CDFs an indexing scheme is used to keep track of where a variable's records are
located within the dotCDF file. The order that variable (and attribute entry) values are written to a single-file CDF by
an application may result in a variable's records being noncontiguous. There will be blocks of contiguous records, but
these blocks will not be contiguous in the dotCDF file.

For each variable in a single-file CDF one or more index records will exist. Each of these index records will contain
one or more index entries. Because the indexing scheme is now hierarchical,' each index entry will point to either
another index record (at a lower level in the hierarchy) or to a block of contiguous variable records (at the lowest level
of the hierarchy). An index entry consists of the following fields:

FirstRecord The number of the first record in a block of contiguous variable records or the first record
indexed in a lower-level index record.

LastRecord The number of the last record in a block of contiguous variable records or the last record
indexed in a lower-level index record.

ByteOffset The byte offset within the dotCDF file of the block of contiguous variable records or the
byte offset of a lower-level index record.

To find a particular variable record the CDF library must search through the index entries for that variable. Improved
performance will result if there are fewer index entries to search. This can be achieved by having a larger number of
records in each block of contiguous variable records (resulting in fewer overall index entries). Techniques used to
achieve fewer index entries are outlined in the Allocated Records and Blocking Factor descriptions in Section 2.3.12.

% Or .cdf:1 or .CDF or .CDF;1.
' As of CDF 2.6.

32

It is possible to inquire the indexing statistics for a variable. Using the Internal Interface, an application may inquire
the number of indexing levels in the hierarchy, the number of index records, and total number of entries for a variable
using the <GET_,1/zZVAR_nINDEXLEVELS >," <GET ,r/zZVAR _nINDEXRECORDS >, and
<GET ,1/zZVAR nINDEXENTRIES > operations.

Multi-File CDFs

A multi-file CDF (MULTI FILE) consists of one file (with extension .cdf referred to as the dotCDF file) containing
control information and attribute entry data and a separate file for each variable defined in the CDF (with extensions
v0,.vl, ... for rVariables and .z0,.zl, ... for zVariables). Each variable file contains the data values for the
corresponding variable. (The control information for each variable is stored in the dotCDF file.)

Performance

The most efficient access to CDF variables will usually occur when the CDF has the multi-file format. The extra
overhead involved with the indexing scheme used in single-file CDFs is small, so the difference may not be significant
(especially if hyper reads/writes are used). The drawback to using the multi-file format is that more than one file is
associated with a CDF (which may or may not be a problem for your system management).

There is a case in which the single-file format may be more efficient. If a CDF has a large number of variables (larger
than the number of files that may be open at once by an application) and the variables values are accessed variable-by-
variable (rather than accessing an entire variable before going to the next variable), the multi-file format may be much
slower than the single-file format. This is because the CDF library will have to close one variable file and then open
another as each variable value is accessed by the application (since the operating system's open file limit will be
reached). If the application was to access every value for a variable before going on to the next variable, this would not
occur (but it might create complications for the application).

Note that the format of a CDF can also be converted using the CDFconvert toolkit program (which creates a new CDF
with the specified format). Section 3.4 describes CDFconvert.

2.2.8 Encoding

The encoding of a CDF determines how attribute entry data and variable data values are stored on disk in the CDF
file(s). An application program never has to concern itself with the encoding of the CDF being accessed. The CDF
library performs all of the encoding and decoding of data values for the application.

A CDF's encoding is specified when the CDF is created when using the Standard Interface but is set to the default
encoding for your CDF distribution when created using the Internal Interface. The encoding of an existing CDF may
be changed with the Internal Interface if no variable values or attribute entries have been written (variables and
attributes may exist, however). If the SkeletonCDF toolkit program is used to create a CDF the encoding is specified in
the skeleton table (see Section 3.8).

The encoding specified when creating/modifying a CDF may be any of the native encodings for the computers

supported by CDF in addition to network (XDR) encoding.'” A CDF with any supported encoding is also readable on
any computer supported by CDF.

Host Encodings

! This notation is used when an operation exists for both rVariables and zVariables. In this case, the actual operations
are <GET_,zVAR_nINDEXLEVELS > and <GET ,rVAR nINDEXLEVELS >.
2 This is a change from previous releases of CDF.

33

Host encoding (HOST ENCODING) specifies that variable and attribute entry data values be written to the CDF in
the native encoding of the computer being used. In addition, the following explicit host encodings are supported:

VAX ENCODING VAX and microVAX computers. Double-precision floating-point values are
encoded in Digital's D FLOAT representation.

ALPHAVMSd ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSg ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's G FLOAT representation.

ALPHAVMSi_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in IEEE representation.

ALPHAOSF1_ENCODING DEC Alpha computers running OSF/1.

SUN_ENCODING Sun computers.

SGi_ ENCODING Silicon Graphics Iris and Power Series computers.

DECSTATION_ENCODING DECstation computers.

IBMRS ENCODING IBM RS6000 series computers.

HP ENCODING HP 9000 series computers.

PC_ENCODING PC personal computers.

NeXT_ ENCODING NeXT computers.

MAC_ENCODING Macintosh computers.

When HOST ENCODING is specified, it is translated to the actual host encoding from the above list. All host
encodings are readable and writeable on any machine supported by CDF.

Network Encoding

Network encoding (NETWORK ENCODING) specifies that variable and attribute entry data values be written to the
CDF in the XDR (External Data Representation) format. As values are written to the CDF, the CDF library encodes
them into network encoding. Network encoded CDFs are readable and writeable on any machine supported by CDF
(as are all of the other encodings).

Equivalent Encodings

While an encoding exists for each supported computer, not every encoding is different. The following sections describe
which computers use the same encoding for the various data types.

Character/1-Byte Integer Data Types Since each supported computer uses the ASCII character set and orders the
bits in a byte the same way, the character and 1-byte integer data types (CDF CHAR, CDF UCHAR, CDF BYTE, CDF
INT1, and CDF UINT1) are encoded in the same way on each.

Multiple-Byte Integer Data Types The multiple-byte integer data types (CDF INT2, CDF UINT2, CDF INT4, and
CDF UINT4) are encoded in one of two ways: big-Endian or little-Endian. Big-Endian has the least significant byte

34

(LSB) in the highest memory location while little-Endian has the LSB in the lowest memory location. The supported
computers use big-Endian or little-Endian as shown in Table 2.4. Network (XDR) encoding uses big-Endian encoding
for multiple-byte integer data types.

Big-Endian Little-Endian

Sun VAX

SGi Iris DECstation

IBM RS6000 PC

HP 9000 DEC Alpha (OSF/1)
NeXT DEC Alpha (OpenVMS)
Macintosh

(Network - XDR)

Table 2.4 Equivalent Byte Orderings

Single-Precision Floating-Point Data Types The single-precision floating-point encodings on the supported
computers are either IEEE 754 floating-point or Digital's F FLOAT floating-point. There are also two different byte
orderings for the computers that use IEEE 754 (big-Endian and little-Endian). The single-precision floating-point
encodings for each supported computer are shown in Table 2.5. Network (XDR) encoding uses IEEE 754 (big-Endian)
encoding for single-precision floating-point data types.

IEEE 754 (Big Endian) IEEE 754 (Little Endian) Digital's F FLOAT

Sun DECstation VAX

SGi Iris DEC Alpha (OSF/1) DEC Alpha / OpenVMS/D
IBM RS6000 DEC Alpha (OpenVMS/T) DEC Alpha / OpenVMS/G
HP 9000

NeXT

Macintosh

(Network - XDR)

Table 2.5 Equivalent Single-Precision Floating-Point Encodings

Double-Precision Floating-Point Data Types The double-precision floating-point encodings on the supported
computers are either IEEE 754 floating-point, Digital's D FLOAT floating-point, or Digital's G FLOAT floating-point.
There are also two different byte orderings for the computers that use IEEE 754 (big-Endian and little-Endian). The
double-precision floating-point encodings for each supported computer are shown in Table 2.6. Network (XDR)
encoding uses IEEE 754 (big-Endian) encoding for double-precision floating-point data types.

35

IEEE 754 (Big Endian) IEEE 754 (Little Endian)

Sun DECstation

SGi Iris PC

IBM RS6000 DEC Alpha/OSF/1

HP 9000 DEC Alpha/OpenVMS/I
NeXT

Macintosh

(Network - XDR)

Digital's D FLOAT Digital's G FLOAT
VAX DEC Alpha/OpenVMS/G
DEC Alpha/OpenVMS/D

Table 2.6 Equivalent Double-Precision Floating-Point Encodings

Performance

The best performance when accessing (reading or writing) a CDF will occur when that CDF is in the host encoding of
the computer being used (and host decoding is in effect - see Section 2.2.9). This is because no encoding or decoding
has to be performed by the CDF library. A CDF that must be portable between two or more different types of
computers should normally be network encoded. There may be cases, however, where it would be desirable to create a
CDF with host encoding (e.g., on a slow machine) and then transfer it to a faster machine for processing or conversion
to another encoding. Obviously, there are trade-offs as to which encoding should be used in any one particular case.
Keep in mind that a CDF can always be converted to the host encoding of the machine being used (with CDFconvert)
before being accessed.

2.2.9 Decoding

The decoding of a CDF determines how attribute entry and variable data values are passed to a calling application
program from the CDF library. The default decoding when a CDF is initially opened is host decoding (the native
encoding of the computer being used). When host decoding is in effect, all data values read by an application are
immediately ready for manipulation and display. Almost all of your applications will simply use the default of host
decoding and not be concerned with selecting a decoding. There are some situations, however, where selecting a
different decoding will be advantageous. Some possibilities are as follows:

1. A client/server model where a number of CDFs are maintained on a server computer (in any of the supported
encodings). Clients on different type computers could request data from a CDF on the server computer. The
server computer would then select a decoding for the CDF based on the client's computer type and then read the
data value(s). The value(s) could then be sent directly to the client computer by the server computer without a
conversion being necessary by either the client or the server. The CDF library would perform the necessary
conversions.

2. If data values were being read from a CDF and written in binary form to a file for use on a different type
computer. The proper decoding could be selected for the CDF before any of the data values are read. No
conversions would be necessary by the application program.

A CDF's decoding may be selected and reselected at any time after the CDF has been opened and as many times as
necessary. A CDF's decoding is selected via the Internal Interface with the <SELECT ,CDF _DECODING >
operation. Also, a CDF's decoding does not affect the values that already exist in a CDF or any values subsequently
written. A CDF's encoding determines how the values are written to the CDF file(s). Section 2.2.8 describes a CDF's
encoding.

36

The supported decodings correspond to the supported encodings. They are as follows:

HOST _DECODING The data representation of the host computer. This is the default.

NETWORK DECODING The External Data Representation (XDR).

VAX DECODING VAX and microVAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in Digital's D FLOAT representation.

ALPHAVMSg DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in Digital's G FLOAT representation.

ALPHAVMSi DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in IEEE representation.

ALPHAOSF1_DECODING DEC Alpha running OSF/1 data representation.

SUN_DECODING Sun data representation.

SGi_DECODING Silicon Graphics Iris and Power Series data representation.

DECSTATION DECODING DECstation data representation.

IBMRS DECODING IBM RS6000 series data representation.

HP DECODING HP 9000 series data representation.

PC_DECODING PC data representation.

NeXT DECODING NeXT data representation.

MAC DECODING Macintosh data representation

Performance

The best performance when reading a CDF will occur when the CDF's decoding is the same as the CDF's encoding
since no conversion will have to be performed by the CDF library. Since host decoding is the only directly usable
decoding by an application, CDFs with the host's encoding will provide the best performance. Care should be taken
when selecting the encoding for a CDF.

2.2.10 Compression

A compression may be specified for a single-file CDF that is performed when the CDF is closed and written to disk."
This compression applies to the overall CDF - individual variables may instead be compressed as described in Section
2.3.14. When compression is specified for a CDF, the CDF library maintains an uncompressed version of the dotCDF
file in a scratch file. When the CDF is closed, the uncompressed dotCDF file is compressed and written to the file with
the name specified when the CDF was opened/created. If the application program closing the CDF were to abnormally
terminate before the dotCDF file was successfully compressed and written, the uncompressed dotCDF scratch file
would remain in the scratch directory. The scratch directory used by the CDF library is described in Section 2.1.4.

1 Compression is not allowed with multi-file CDFs.

37

Overall compression for a CDF is specified with the <PUT ,CDF_COMPRESSION > operation of the Internal
Interface. It may be respecified as often as desired. A CDF's overall compression may be inquired using

the <GET ,CDF_COMPRESSION > operation for an open CDF and the <GET ,CDF INFO > operation for a CDF
that has not been opened (which saves the overhead of actually decompressing the CDF). The available compression
algorithms are described in Section 2.6.

2.2.11 Limits

Limits within a CDF are defined in the appropriate include files: cdf.h for C applications and cdf.inc for Fortran
applications. The following limits exist:"*

CDF_MAX DIMS The maximum number of dimensions that rVariables/zVariables may have.
CDF_VAR NAME LEN The maximum number of characters in a variable name.
CDF_ATTR NAME LEN The maximum number of characters in an attribute name.

CDF _PATHNAME LEN The maximum number of characters in the name of a file used to specify a CDF.

Most of these limits can be raised. Contact CDF User Support if that becomes necessary.

23 Variables

CDF variables are the mechanism for storing data. (Attributes are used to store metadata.) A new variable may be
created in a CDF at any time. Two varieties of variables are supported: rVariables and zVariables.”” The main
difference is that all rVariables in a CDF have the same dimensionality whereas zVariables can have differing
dimensionalities. In the following sections the differences between the two varieties will be noted where appropriate.

2.3.1 Types

With the introduction of compression and sparseness for variables, there now exist several different types of variables
(in addition to the distinction between rVariables and zVariables). The various types of variables are as follows. . .

"standard variable" A variable in a single-file CDF that is not compressed nor has sparse records
or arrays.
"compressed variable" A variable in a single-file CDF that is compressed and may or may not have

sparse records (but cannot have sparse arrays).

"variable with sparse records" A variable in a single-file CDF that has sparse records and may be
compressed, have sparse arrays, or have neither.

"variable with sparse arrays" A variable in a single-file CDF that has sparse arrays and may or may not
have sparse records (but cannot be compressed).

' Previous releases of CDF limited the number of variables a CDF could contain. That limit has been eliminated
except for multi-file CDFs on an PC because of the 8.3 naming convention.

' The letters "r" and "z" don't stand for anything in particular. "r" sort of stands for "regular" since rVariables have
always been supported by CDF. However, for Java APIs, only zVariables are supported.

38

"multi-file variable" A variable in a multi-file CDF. It cannot be compressed, have sparse records,
or have sparse arrays.

The term "variable" is used when a discussing a property that applies to all of the various variable types.

2.3.2 Accessing

The Standard Interface deals exclusively with rVariables. No access to zVariables is provided. The Internal Interface
may be used to access either rVariables or zVariables.

2.3.3 Opening

The CDF library automatically opens the variable files in a multi-file CDF as the variables are accessed. An application
never has to concern itself with opening variables. The opening of variables does not apply to single-file CDFs since
individual files do not exist for each variable.

2.3.4 Closing.

The CDF library automatically closes the variable files in a multi-file CDF when the CDF itself is closed by an
application.'® Variable files are also closed automatically by the CDF library as other variables are accessed if
insufficient file pointers exist to keep all of the variables open at once This would be due to an open file quota
enforced by the operating system being used.

A case also exists where it may be beneficial for an application to close a variable in a multi-file CDF. Since each open
variable file uses some number of cache buffers, a large amount of system memory could be in use (see Section 2.1.5).
This may not be a problem on VAX or UNIX machines but could result in a program crashing on an MS-DOS
machine. If memory is limited, an application may want to close variables after they have been accessed in order to
minimize the total number of cache buffers being used. In a C application rVariables are closed using either the
CDFvarClose function (Standard Interface) or the <CLOSE ,rVAR > operation of the CDFlib function (Internal
Interface). zVariables are closed using the <CLOSE ,zZVAR > operation of the CDFlib function (Internal Interface).
In a Fortran application rVariables are closed using either the CDF var close subroutine (Standard Interface) or the
<CLOSE ,rVAR > operation of the CDF lib function (Internal Interface). zVariables are closed using the
<CLOSE _,zZVAR > operation of the CDF lib function (Internal Interface).

The closing of variables does not apply to single-file CDFs since individual files do not exist for each variable.

2.3.5 Naming

Each variable in a CDF has a unique name. This applies to rVariables and zVariables together (i.e., an rVariable
cannot have the same name as a zVariable). Variable names are case sensitive regardless of the operating system being
used and may consist of up to CDF VAR NAME LEN printable characters (including blanks). Trailing blanks,
however, are ignored when the CDF library compares variable names. "LAT" and "LAT " are considered to be the
same name, so they cannot both exist in the same CDF. This was done because Version 1 of CDF padded variable
names on the right with blanks out to eight characters. When a Version 1 CDF was converted to a Version 2 CDF these
trailing blanks remained in the variable names. To allow CDF Version 2 applications to read such a CDF without
having to be concerned with the trailing blanks, the trailing blanks are ignored by the CDF library when comparing
variable names. The trailing blanks are returned as part of the name, however, when a variable is inquired by an
application program.

' 1t is required that an application close a CDF before exiting.

39

2.3.6 Numbering

The rVariables in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. Likewise, the zVariables in a CDF are numbered consecutively starting at one (1) for Fortran
applications and starting at zero (0) for C applications. The CDF library assigns variable numbers as the variables are
created.

2.3.7 Deleting

A variable may be deleted from a single-file CDF."” Deleting a variable also causes the deletion of the corresponding
attribute entries for the variable. The disk space used by the variable definition, the variable's data records, and the
corresponding attribute entries becomes available for use as needed by the CDF library. Also, the variables which
numerically follow the variable being deleted are renumbered immediately. (Each is decremented by one.) Variables
are deleted using the <DELETE , 1/zZVAR > operation of the Internal Interface.

2.3.8 Dimensionality

Variable values are stored in arrays. A variable's dimensionality refers to the number of dimensions and the dimension
sizes of these arrays.

Each rVariable in a CDF has the same dimensionality. An array of values exists for each rVariable at each record in a
CDF. The values may not be physically stored but may be virtual (see Sections 2.3.12, 2.3.10, and 2.3.11).

A zVariable may have a dimensionality which is different from that of the rVariables and the other zVariables. An
array of values exists for each zVariable at each record in a CDF. As with rVariables the values may not be physically
stored but may be virtual. zVariables are intended for use in those situations where using an rVariable would waste disk
space or not logically make sense.

A variable array having two or more dimensions also contains subarrays. For instance, in a 3-dimensional array with
dimension sizes [10,20,30], each array consists of ten 2-dimensional subarrays of size [20,30], and each of those 2-
dimensional subarrays consists of twenty 1-dimensional subarrays of size [30]. Subarrays will be referred to when
discussing other properties of CDF variables.

2.3.9 Data Specification

Each variable in a CDF has a defined data specification. A variable's data specification consists of a data type and a
number of elements of that data type. A variable's data specification is specified when the variable

is created. The data specification of an existing variable may also be changed if either of the following conditions is

true.

1. Values have not yet been written to the variable (including an explicitly written pad value - see Section
2.3.20).

2. The old data type and new data type are considered equivalent, and the number of elements for the variable are
the same. Equivalent data types are described in Section 2.5.5.

Data Type

' Variables may not currently be deleted from a multi-file CDF.

40

The supported data types are described in Section 2.5. Variables having any combination of data types may exist in the
same CDF.

Number of Elements

In addition to a data type, each variable also has a number of elements. This refers to the number of elements of the
data type at each variable value. For character data types (CDF CHAR and CDF UCHAR) this is the number of
characters in each string. (A variable value consists of the entire character string.) The character string can be thought
of as an array of characters. For non-character data types, this must always be one (1). An array of elements per
variable value is not allowed for non-character data types.

2.3.10 Record Variance

A variable's record variance specifies whether or not the variable's values change from record to record. The effect of a
variable's record variance is defined as follows.

VARY The values do change from record to record. Each variable record is physically written with
no gaps between records (i.e., if a record more than one beyond the maximum record is
written, the intervening records are also physically written and contain pad values). If a
record is read beyond the maximum record written to a variable, the pad value for the
variable is returned. Variables of this type are referred to as record-variant (RV).

NOVARY The values do not change from record to record. Only one record is physically written to
the variable. Each record contains the same values (including virtual records beyond the
first record). Variables of this type are referred to as non-record-variant (NRV).

Section 2.3.12 describes variable records in more detail.

A variable's record variance is specified when the variable is created. The record variance of an existing variable may
be changed only if values have not yet been written to that variable. (An explicit pad value may have been specified
however.)

2.3.11 Dimension Variance

A variable's dimension variances specify whether or not the values change along the corresponding dimension. The
effects of a dimension variance are defined as follows:

VARY The values do change along the dimension. All of the values for the dimension (or all of
the subarrays) are physically stored.

NOVARY The values do not change along the dimension. Only one value (or subarray) is physically
written for that dimension. Each value (or subarray) along that dimension is the same
(including virtual values/subarrays beyond the first value/subarray).

Figure 2.1 illustrates the effect of dimension variances on a variable with 2-dimensional arrays (for a particular record).
For variable 1 each value in the array is physically stored and therefore unique. Because variable does not vary along
the second dimension, each value along that dimension is the same so only one value for that dimension is physically
stored (the other values are virtual). The same is true for variable 3 which does not vary along the first dimension.
Variable 4 does not vary along either dimension. Only one value is physically stored for the array - all of the other
values are the same (they are virtual).

41

A variable's dimension variances are specified when the variable is created. The dimension variances of an existing
variable may be changed only if values have not yet been written to that variable. (An explicit pad value may have
been specified, however.)

rVariable 1 rVariable 2 rVariable 3 rVariable 4
(VARY, VARY) (VARY, NOVARY) (NOVARY, VARY) (NOVARY, NOVARY)
EEEE)E] (B

‘ Ejnrg_l H [‘.‘:::.f.
MO

@] =]
MR =

’_| physical value

virtual value

Figure 2.1 Physical vs. Virtual Dimensions

2.3.12 Records.

A CDF record is a set of variable arrays, one per rVariable and one per zVariable in the CDF. The variable arrays in a
particular record are generally related to each other in some way (often time). This does not have to be the case and is
not enforced by the CDF library in any way. A variable record is simply the corresponding variable array within a
CDF record.

Physical variable records are actually stored in the CDF file(s). Virtual variable records are not actually stored but do
exist in the conceptual view of the variable provided by CDF. Virtual records can occur in a CDF because of the
following reasons:

1. If a variable's values do not vary from record to record (record variance of NOVARY), all of that variable's
records beyond the first one are virtual and have the same values as the first record (only the first record is
physically stored). If a record has not yet been written to that variable, then all of its records are virtual and
contain the pad value for that variable.

2. If a variable's values do vary from record to record (record variance of VARY), then the records beyond the
last record actually written are virtual and contain the pad value for that variable.

3. [If a variable has sparse records, then any unwritten records for that variable are virtual and contain either the
pad value for that variable or the previous existing record's values (depending on the type of sparse records).
Sparse records are described on page 48.

Record variance is described in Section 2.3.10. Variable pad values are described in Section 2.3.20.

The maximum record written is maintained by the CDF library for each variable in the CDF. The "maximum CDF
record" is simply the maximum rVariable record written (of all the rVariables). This quantity is available through the
Standard Interface when inquiring about a CDF. Because the Standard Interface does not allow access to zVariables,
zVariables are not considered when determining the "maximum CDF record." The "maximum CDF record" would be
used by applications dealing only with rVariables. The maximum record written for each rVariable and zVariable is
available via the Internal Interface.

42

Figure 2.2 illustrates the relationships between physical and virtual records for a standard variable. Variable 1 has five
records that were physically written. Only two records were physically written to variable 2 so the following records
are virtual (containing the pad value for that variable). Only one record can be physically written to variable 3 because
its record variance is NOVARY. The other records are virtual and contain the same values as the first record. Because
a record has not been physically written to variable 4, all of its records are virtual containing the pad value for that
variable. Likewise, since no records have been written to variable 5, all of its records are also virtual and contain the
pad value for that variable.

rVariable 1 rVariable 2 rVariable 3 rVariable 4 rVariable 5
(VARY) (VARY) (NOVARY) (NOVARY) (VARY)

I} &=

]

Igliplimiini

[11| physical record virtual record

Figure 2.2 Physical vs. Virtual Records, Standard Variable

43

Note that a variable's records do not have to be written sequentially starting at the first record. The records may be
written in any order. For a variable not having sparse records with a VARY record variance, if a new record more than
one record beyond the current maximum record for the variable is written, the intervening records will be physically
written and contain the pad value for that variable. For a variable having sparse records, only those records written by
an application are physically stored. Unwritten records are virtual as described in Sparse Records on 48.

Also, when one or more values are written to a new physical record, the entire record is physically written with the pad
value for the variable being used for the unspecified values (if any). The remaining values in the record may or may
not be subsequently written. Variable pad values are described in Section 2.3.20.

Numbering

The record numbers in a CDF are numbered starting at one (1) for Fortran applications and starting at zero (0) for C
applications.

Sparse Records

A variable in a single-file CDF can be specified as having sparse records.'® If so, then only those records that are
explicitly written to the variable will be physically stored. If a variable is not specified as having sparse records, then
all of the records up to the maximum written will be physically stored. Sparse records are only allowed in single-file
CDFs (where the indexing scheme used for variable records makes this possible). Considerable disk space can be saved
in the dotCDF file for a variable that has gaps of missing data if that variable is specified as having sparse records.

For an uncompressed variable having sparse records, it is also beneficial if the blocks of records that are going to be
written can first be allocated. This will allow the CDF library to optimize the indexing for the variable. Otherwise, the
CDF library will use the staging scratch file to minimize the indexing needed. Note that records cannot be allocated for
compressed variables (whether or not they have sparse records).

Two types of sparse records can be specified for a variable. They differ only in how unwritten records are presented in
the conceptual view of the variable. These missing records are considered virtual records just like the records beyond
the last record written. Pad-missing sparse records specifies that when a virtual record is read the variable's pad value
should be returned. Previous-missing sparse records specifies that when a virtual record is read the previous existing
record's values should be returned. If a previous record does not exist, the variable's pad value will be returned.

Note that previous-missing sparse records can also be used to save disk space for a variable if that variable's values do
not change from record to record except occasionally. If the only records written were those that changed from the
previous record, then the virtual records following each record actually written (physically stored) would all have the
same value(s). This could save considerable disk space if the values do not change often. For example, consider a 0-
dimensional variable having previous-missing sparse records that is being used to store temperature data. Each record
corresponds to a temperature reading at a given time. Table 2.7 shows how the variable might appear conceptually
along with which records are physically stored. Note that only three records are physically stored but that nine records
appear in the conceptual view of the variable.

Sparse records are specified for a variable using the <PUT ,1/zZVAR_SPARSERECORDS > operation of the Internal
Interface. One of the following types of sparse records must be specified:

NO_SPARSERECORDS The variable does not have sparse records.

PAD SPARSERECORDS The variable has pad-missing sparse records. The notation sRecords.PAD is
used by the CDF toolkit for pad-missing sparse records.

'8 Sparse records are not allowed for a variable in a multi-file CDF.

44

PREV SPARSERECORDS The variable has previous-missing sparse records. The notation
sRecords.PREV is used by the CDF toolkit for previous-missing sparse

records.
Record Temperature
1 101.4 (Physical)
2 101.4 (Virtual)
3 101.5 (Physical)
4 101.5 (Virtual)
5 101.5 (Virtual)
6 101.5 (Virtual)
7 101.5 (Virtual)
8 101.6 (Physical)
9 101.6 (Virtual)

Table 2.7 Previous-missing Sparse Records Example, Conceptual View vs. Physical Storage

The <GET _,r/zZVAR_SPARSERECORDS > operation can be used to inquire the type of sparse records.

Allocated Records.

The Internal Interface may be used to allocate records for an uncompressed variable in a single-file CDF'’ Normally
the number of records allocated would be the number that are to be written (assuming this can be determined). This
can greatly improve performance when writing (and reading) values for the variable because of reduced overhead when
searching the index entries (as described in Section 2.2.7). The application is normally expected to write to all of the
allocated records. For NRV variables, only one record may be allocated (because only one record will ever physically
exist). If the variable has sparse records, only those blocks of records that are going to be written would be allocated.
Records cannot be allocated by an application for compressed variables because they are allocated automatically by the
CDF library when their compressed size is known.

Performance is improved when using this method because the allocated records will be as contiguous as possible
requiring the fewest number of index entries. This will greatly improve the time needed to locate a particular record
when the variable is accessed. In addition, the CDF will be slightly smaller because of the reduced number of index
records.

Note that records do not have to be allocated by an application before they are written to a variable. The CDF library
will automatically allocate any needed records based on the variable's blocking factor. Also, records may be allocated
at any time (not only before records have been written as in previous CDF releases).

Records are allocated using the <PUT ,1/zZVAR_ALLOCATERECS > and <PUT ,1/zVAR_ALLOCATEBLOCK >
operations of the Internal Interface. The number of records allocated for a variable can be inquired using the
<GET ,1/zZVAR NUMallocRECS > operation. The maximum record allocated for a variable can be inquired using the
<GET ,1/zZVAR_MAXallocREC > operation. The exact records allocated for a variable can be determined using a
combination of the <GET ,1/7zZVAR ALLOCATEDTO > and <GET ,i/zZVAR_ALLOCATEDFROM > operations.

Initial Records

1 There is no reason to allocate records for a variable in a multi-file CDF.

45

The Internal Interface may be used to specify an initial number of records to be written for a variable.”” The pad value
for the variable is written at each record as if the application had done so itself. The Internal Interface allows this to be
done more conveniently with only one function call. Note that the default pad value for the variable's data type will be
used unless a pad value is explicitly specified for the variable. If a specific pad value is desired for a variable, then it
must be specified before the number of initial records is specified. Also, any compression or sparseness for the
variable must be specified before writing the initial records because those properties cannot be changed after records
have been written.

Specifying a number of initial records for a variable would usually be done only for a CDF with the single-file format.
Because the records would be allocated as contiguously as possible within the CDF file, the indexing scheme (see
Section 2.2.7) would require fewer entries making the access to that variable more efficient. Note that this method is
not as efficient as allocating records in those cases where all of the records are going to be written by the application.
This is because the records would be written twice - once with the pad value and then again by the application.

The number of initial records specified would in most cases be the number of records planned for a variable. Note that
additional records may be added to a variable at any time. For NRV variables the number of

initial records must always be specified as one (1). This is because only one physical record will ever actually be
written. Initial records for a variable may be specified only once.

Initial records are written to variables using the <PUT ,1r/zZVAR_INITIALRECS > operation of the Internal Interface.
Explicit pad values are specified using the <PUT ,1/7zZVAR PADVALUE > operation.

Blocking Factor.

A variable's blocking factor’' affects how records are allocated in the CDF file(s). For NRV variables the blocking
factor is not applicable because only one physical record will ever exist. For variables in a multi-file CDF the blocking
factor is not used because only those records written by an application will exist in the variable files. But for the other
types of variables in a single-file CDF the blocking factor can have a significant impact. The following sections will
describe how a variable's blocking factor is used in each case.

Standard Variables Space in the dotCDF file for records written to a standard variable is either allocated explicitly by
an application or automatically by the CDF library. If the records are allocated by the application the exact number
needed can be specified. This can be used to optimize the indexing for the variable resulting in fewer (or even just one)
index entries that must be searched when accessing the variable. If the records are not allocated by the application,
however, they must be automatically allocated by the CDF library. Because the CDF library wants to optimize the
indexing for a variable, it may allocate additional records beyond those needed at the time in an attempt to minimize
the number of index entries. The variable's blocking factor specifies the minimum number of records to allocate when
an application writes to an unallocated record. This is based on the assumption that the addition records allocated will
eventually be written. If that is not the case, the allocated but unwritten records will simply waste space in the dotCDF
file. The best way to prevent that situation is for an application to explicitly allocate the records that are going to be
written. An application can specify a blocking factor for a variable or let the CDF library use a default blocking factor.
Note that setting the blocking factor too low (and not allocating the records being written) may result in excessive
indexing for a variable. Even using the default blocking factor for a variable may result in excessive indexing unless
the records to be written are first allocated. The indexing scheme used by the CDF library is described in Section 2.2.7.

Compressed Variables The blocking factor for compressed variables specifies the number of records that will be
compressed together. The CDF library stages the records of a compressed variable in a scratch file. The number of
records in the staging area is also based on the variable's blocking factor. When necessary, the CDF library compresses
the records in the staging area and writes the compressed block of records to the dotCDF file. Each block of
compressed records has an associated index entry (see Section 2.2.7). Setting the blocking factor high will minimize the

2 The use of allocated records would in most cases be more efficient than specifying initial records.
21 A variable’s blocking factor was previously called its “extend records.”

46

indexing for a variable but will increase the time needed to access an individual record because the entire block in
which it is compressed will have to be decompressed. If the blocking factor is too low, the decompression of an
individual record will not take as long but excessive indexing may result (which will increase the access overhead).
Also, most compression algorithms work better as the number of records (bytes) being compressed is increased. Note
that if the compressed variable also has sparse records, the blocking factor becomes the maximum number of records
per compressed block. Depending on which records are written some of the compressed blocks may contain fewer
records. The blocking factor for a compressed variable may be explicitly specified by an application or a default may
be used as determined by the CDF library. Once a record has been written to the variable, however, the blocking factor
cannot be changed.

Uncompressed Variables With Sparse Records The CDF library uses a staging area scratch file for uncompressed
variables with sparse records. This is done in an attempt to minimize the indexing for the variable (as described in
Section 2.2.7) when the records being written are not first allocated by an application. The blocking factor specifies the
number of records to be maintained in the staging area for the variable (which will be the maximum number of
unallocated consecutive records that would be stored contiguously in a block when written by an application). An
explicit blocking factor can be specified or a default determined by the CDF library may be used.

Blocking factors are explicitly specified for variables using the <PUT _,1/zZVAR_BLOCKINGFACTOR > operation of
the Internal Interface. The blocking factor may be inquired using the <GET ,r/zZVAR BLOCKINGFACTOR >
operation. If an explicit blocking factor has not been specified, the default blocking factor for the variable will be
returned.

Note the distinction between records allocated and records actually written. The CDF library may allocate more
records than are actually written by an application for the reasons stated above. Both the number of records written to a
variable and the number of records allocated for that variable may be inquired using the Internal Interface.

Deleting

The records of a variable in a single-file CDF may be deleted.”> If the variable has sparse records, the deleted records
simply cease to exist. A gap of one or more missing records will be formed. But if the variable does not have sparse
records, the records following the block of deleted records are immediately renumbered to fill in the gap created. The
record numbers remain consecutive without a gap.

Variable records are deleted using the <DELETE ,r/zZVAR RECORDS > operation of the Internal Interface.

2.3.13 Sparse Arrays

Sparse arrays are planned for a future release of CDF. The idea being that only those values actually written to a
variable array (record) will be physically stored. Currently, unwritten values in each variable array are physically
stored using the variable's pad value. Note that specifying a compression for a variable will in many cases result in a
disk space savings similar to that of sparse arrays. The exact differences in disk space savings and execution overhead
between sparse arrays and variable compression will not be known until sparse arrays have been implemented.

2.3.14 Compression

22 Variable records may be deleted from a multi-file CDF.

47

A compression may be specified for a variable in a single-file CDF which gets performed automatically as values are
written.” The values are transparently decompressed as they are read from the variable. The values of a variable are
compressed in blocks of one or more variable records. The blocking factor for a compressed variable (described
beginning on page 50) specifies the number of records in each block (or the maximum number in the case of a
compressed variable with sparse records). Properly setting the blocking factor involves a trade-off between the
compression percentage achieved and execution speed when accessing values in individual variable records. The CDF
library also uses a staging area scratch file to minimize access overhead for a compressed variable. Note that if a block
of variable records actually increases in size when compressed, the block of records will be stored uncompressed in the
CDF. This could happen if the blocking factor is set too low or simply because of the nature of the data and the
compression algorithm being used.

The compression for a variable is specified with the <PUT ,i/zZVAR _COMPRESSION > operation of the internal
interface. A variable's compression may be inquired with the <GET ,1/7zZVAR_COMPRESSION > operation. Section
2.6 describes the available compression algorithms.

Reserve Percentage.

If a value in a compressed block of records is changed, the amount of compression achieved for that block may also
change. If it increases, the block of compressed records may have to be moved in the dotCDF file. This will most likely
result in the dotCDF file increasing in size if the block of compressed records is placed at the end (leaving a block of
unused bytes where the compressed block of records previously existed). This is not a desirable situation considering
that the variable compression is supposed to make the CDF smaller. To alleviate this potential problem a reserve
percentage may be selected for a compressed variable. When a compressed block of variable records is initially written
to the dotCDF file some additional space will be allocated. This will allow that block of compressed records to expand
in size if necessary. The reserve percentage is interpreted as follows:

0 No reserve space is allocated. This is the default.

1..100 Allocates that percentage of the uncompressed size of the block of variable records (as a
minimum). For example, if a 1000-byte block of records compressed down to 600 bytes and
the reserve percentage is 70%, then 700 bytes would actually be allocated for the block in
the dotCDF file. If the reserve percentage is 50%, then 600 bytes would of course still have
to be allocated.

101... Allocates that percentage of the size of the compressed block of variable records but not
exceeding the uncompressed size. For example, if a 1000- byte block of records compressed
down to 800 bytes and the reserve per- centage is 110%, then 880 bytes would be allocated
for the block.

Even specifying a reserve percentage for a compressed variable does not guarantee that the problem with moving
blocks of compressed records as the variable's values are changed will be avoided. If a CDF does become fragmented
in this way remember that the CDFconvert utility can always be used to create a new CDF with each variable's
compression being optimized (e.g., no fragmentation).

The reserve percentage for a compressed variable is selected with the <SELECT ,i/zZVAR_RESERVEPERCENT >

operation. A variable's reserve percentage may be confirmed with the <CONFIRM ,r/zZVAR RESERVEPERCENT >
operation.

2.3.15 Majority

3 Note that variable compression is not allowed in a multi-file CDF.

48

The variable majority of a CDF describes how variable values within each variable array (record) are stored. Each
variable in a CDF has the same majority. The majority can be either row major or column major.

ROW MAJOR Row majority. The first dimension changes the slowest.
COLUMN MAJOR Column majority. The first dimension changes the fastest.

For example, an array for an rVariable with [VARY,VARY] dimension variances in a 2-dimensional CDF with
dimension sizes [2,4] and row majority would be stored as follows:

v(1,1), v(1,2), v(1,3), v(1,4), v(2,1), v(2,2), v(2,3), v(2,4)

where v(i,j) is the value at indices (i,j). If the CDF had column majority, the array would be stored as follows:
v(1,1), v(2,1), v(1,2), v(2,2), v(1,3), v(2,3), v(1,4), v(2,4)

In each case v(1,1) is stored at the low address.

An application needs to be concerned with the majority of a CDF in the following cases:

1. When performing a variable hyper read, the values placed in the buffer by the CDF library will be in the
variable majority of the CDF. The application must process the values according to that majority.

When performing a variable hyper write, the CDF library expects the values in the buffer to be in the variable
majority of the CDF. The application must place the values into the buffer in that majority.

2. When sequential access is used, the values are read/written in the order imposed by the variable majority of the
CDF.

3. When single value reads/writes are performed, the majority could have an effect. The CDF library uses a
caching scheme to optimize** the random access to variable values. If all of the values of a record are to be
read/written, there may be an increase in performance if the values are accessed with (rather than against) the
majority. For example, if the majority is row-major, increment the last index the fastest.

4. When performing a multiple variable read/write, the full-physical records in the buffer will/must be in the
variable majority of the CDF.

A CDF's variable majority is specified when the CDF is created when using the Standard Interface but is set to the
default variable majority for your CDF distribution when created using the Internal Interface. The majority of an

existing CDF may be changed using the Internal Interface only if variable values have not yet been written. (Variables
may exist and explicit pad values may have been specified, however.)

2.3.16 Single Value Access

Single value access allows only one value to be read from or written to a variable with a single call to the CDF library.
Two parameters are specified when performing a single value read/write:

RecordNumber The record number at which to perform the access.

DimensionIndices The indices within the record at which to perform the access.

2 Since an application knows how it will be accessing a variable, it knows best how to optimize the caching scheme
used. See Section 2.1.5 for details on how an application can control the CDF library caching scheme.

49

For 0-dimensional variables, the dimension indices are not applicable.

Single value access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a
record variance of NOVARY (with one record written) and a value is read from the fourth record, the CDF library will
actually read the value from the first record (the record that is physically stored). If a value were written to the fourth
record, the CDF library would actually write the value to the first record (the only record that actually physically
exists). If the record variance is VARY, the values are written to the actual records. (The physical records are the same
as the virtual records.) The same applies to any dimension variances that are NOVARY. When a set of indices is
specified for a single value read/write, the index for a dimension whose variance is NOVARY is forced to the first
index regardless of the actual index specified for that dimension (see Section 2.3.11).

In a C application single value access for rVariables is performed using either the CDFvarGet and CDFvarPut functions
(Standard Interface) or the <GET ,rVAR DATA > and <PUT ,rVAR_DATA > operations of the CDFlib function
(Internal Interface). Single value access for zVariables must be performed using the <GET ,zZVAR DATA > and
<PUT ,zVAR DATA > operations of CDFlib. In a Fortran application single value access for rVariables is
performed using either the CDF var get and CDF var put subroutines (Standard Interface) or the
<GET_,rVAR DATA > and <PUT ,rVAR DATA > operations of the CDF lib function (Internal Interface). Single
value access for zVariables must be performed using the <GET ,zZVAR DATA > and <PUT ,zVAR DATA >
operations of CDF lib.

2.3.17 Hyper Access

Hyper access allows more than one value to be read from or written to a variable with a single call to the CDF library.
In fact, the entire variable may be accessed at once (if a large enough memory buffer is available to your application).
Hyper reads cause the CDF library to read from the variable record(s) in the CDF and place the values into a memory
buffer provided by the application. Hyper writes cause the CDF library to take values from a memory buffer provided
by the application and write them to the variable records in the CDF. Six parameters are specified when performing a
hyper read/write:

RecordNumber The record number at which to start the access.
RecordCount The number of records to access.
RecordInterval The interval between records being accessed. An interval of two (2) would indicate

that every other record is to be accessed.

DimensionIndices The indices within each record at which the access should begin.
DimensionCounts The number of values along each dimension that should be accessed.
Dimensionlntervals For each dimension, the interval between values being accessed. An interval of

three (3) would indicate that every third value is to be accessed.
For 0-dimensional variables, the dimension indices, counts, and intervals are not applicable.

A hyper access may or may not read/write a contiguous set of values stored for a variable in the CDF. However, the
values in the memory buffer received/provided by the application are contiguous.

Hyper access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a record
variance of NOVARY (with one record written) and a hyper read of the first five records for that variable is requested,
the CDF library will read the single record that is physically stored and place it five times (contiguously) into the
memory buffer provided by the application. The same applies to any dimension variances that are NOVARY. For
example, if the count for a dimension is three and the dimension variance is NOVARY, the one value (or subarray)

50

physically stored will be read by the CDF library and placed into the application's memory buffer three times
(contiguously).

Example (Fortran application)

Assume a 2-dimensional variable array with sizes [2,4], row majority, a record variance of VARY, dimension variances
of [VARY,VARY], and hyper read parameters as follows:

record number 5
record count 2
record interval 1
dimension indices 1
dimension counts 2
dimension intervals 1

1
4
1

The values placed in the application's buffer would be as follows (with the first value being in low memory):

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
6(1,1) 6(1,2) 6(1,3) 6(1,4) 6(2,1) 6(2,2) 6(2,3) 6(2,4)

where 1(i,j) is a physically stored value with r being the record number, i being the first dimension index, and j being
the second dimension index. (r, i, and j are physical record numbers and dimension indices.)

If the dimension variances had been [VARY,NOVARY], the values placed in the buffer would have been

5(1,1) 5(1,1) 5(1,1) 5(1,1) 5(2,1) 5(2,1) 5(2,1) 5(2,1)
6(1,1),6(1,1) 6(1,1) 6(1,1) 6(2,1) 6(2,1) 6(2,1) 6(2,1)

If the record count had been 3 and the record interval 2, the values placed in the buffer would have been

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
7(1,1) 7(1,2) 7(1,3) 7(1,4) 7(2,1) 7(2,2) 7(2,3) 7(2,4)
9(1,1) 9(1,2) 9(1,3) 9(1,4) 9(2,1) 9(2,2) 9(2,3) 9(2,4)

If the dimension counts had been [2,2] and the dimension intervals [1,2], the values placed in the buffer would have
been

5(1,1) 5(1,3) 5(2,1) 5(2,3)
6(1,1) 6(1,3) 6(2,1) 6(2,3)

If the CDF majority had been column major, the values placed in the buffer would have been.

5(1,1) 5(2,1) 5(1,2) 5(2,2) 5(1,3) 5(2,3) 5(1,4) 5(2,4)
6(1,1) 6(2,1) 6(1,2) 6(2,2) 6(1,3) 6(2,3) 6(1,4) 6(2,4)

Had these examples been for hyper writes, the CDF library would have expected to find the values in the application's
buffer exactly as they were placed there during the corresponding hyper read. In the case where the record interval was
2, the records being skipped would be written using the variable's pad value if they did not already exist. If they did
already exist, they would not be affected.

In a C application, hyper writes for rVariables are performed using the CDFvarHyperPut function (Standard Interface)
or the <PUT ,rVAR HYPERDATA > operation of the CDFlib function (Internal Interface). Hyper writes for
zVariables must be performed using the <PUT ,zZVAR HYPERDATA > operation of CDFlib. Hyper reads for
rVariables are performed using the CDFvarHyperGet function (Standard Interface) or the

51

<GET ,rVAR HYPERDATA > operation of CDFlib. Hyper reads for zVariables must be performed using the
<GET ,zZVAR_HYPERDATA > operation of CDFlib.

In a Fortran application, hyper writes for rVariables are performed using the CDF var hyper put subroutine (Standard
Interface) or the <PUT ,rVAR HYPERDATA > operation of the CDF lib function (Internal Interface). Hyper writes
for zVariables must be performed using the <PUT ,zZVAR HYPERDATA > operation of CDF lib. Hyper reads for
rVariables are performed wusing the CDF var hyper get subroutine (Standard Interface) or the
<GET_,rVAR_HYPERDATA > operation of CDF lib. Hyper reads for zVariables must be performed using the

<GET ,zZVAR_HYPERDATA_ > operation of CDF lib.

2.3.18 Sequential Access

Sequential access provides a way to sequentially read/write the values physically stored for a variable. To use
sequential access, a starting value must first be selected by specifying a record number and dimension indices. This
selects the "current sequential value." A sequential read will return the value at the current sequential value and then
automatically increment the current sequential value to the next value. Likewise, a sequential write will store a value at
the current sequential value and then increment the current sequential value to the next value. Sequential reads are
allowed until the end of the physical records has been reached (not the end of the virtual records [they never end]).
Sequential reading will increment to the beginning of the next physical record if necessary. Sequential writing can be
used to extend the physical records for a variable (as well as to overwrite existing values).

If the variable has sparse records, the virtual records in a gap of missing records are not skipped. The type of sparse
records (see Section 2.3.12) will determine the values returned. When a virtual record in a gap of missing records is
read, the informational status code VIRTUAL RECORD DATA is returned (rather than END OF VARIABLE).
Sequential writes will create any necessary record in a gap of missing records (i.e., sequential writes do not skip virtual
records in a gap of missing records).

Example (Fortran application)

Assume a 2-dimensional array with sizes [2,3], column majority, a record variance of VARY, dimension variances of
[VARY,VARY], nine (9) physical records written, and that the current sequential value has been set to record number
7 and indices [2,2]. Consecutive sequential reads would cause the following values to be read and returned to the
application:

7(2,2) 7(1,3) 7(2,3)
8(1,1) 8(2,1) 8(1,2) 8(2,2) 8(1,3) 8(2,3)
9(1,1) 9(2,1) 9(1,2) 9(2,2) 9(1,3) 9(2,3)
END OF VAR

... where 1(i,j) is a physically stored value with r being the record number, i the first dimension index, and j the second
dimension index. (r, i, and j are physical record numbers and dimension indices.) The next sequential read after the last
physical value would cause a status code indicating the end of the variable to be returned (END OF VAR).

Had the dimension variances been [NOVARY,VARY], the values read would have been
7(1,2) 7(1,3)
8(1,1) 8(1,2) 8(1,3)

9(1,1) 9(1,2) 9(1,3)
END_OF VAR

Note that specifying the virtual value 7(2,2) as the current sequential value caused physical value 7(1,2) to actually be
selected (because the first dimension variance is NOVARY).

52

Sequential access for variables is performed using the <GET ,1/zZVAR SEQDATA > and
<PUT ,r/zZVAR_SEQDATA > operations of the Internal Interface.

2.3.19 Multiple Variable Access

Multiple variable access allows an application to read from or write to multiple variables in a single operation. Multiple
variable access works on either the rVariables or the zVariables of a CDF - not a mixture of the two. Up to all of the
rVariables/zVariables may be accessed with a single call to the CDF library. For each variable specified in a multiple
variable access, a full-physical record for that variable will be read/written. A full-physical record consists of all of the
values exactly as they are physically stored in each variable record (the physical values). Virtual values do not apply
when performing a multiple variable access (see Section 2.3.11). Three parameters are specified when performing a
multiple variable read/write.

VariableCount The number of rVariables/zVariables that are being accessed.
VariableList The rVariables/zVariables being accessed (specified by number).
RecordNumbers The record numbers at which the reads/writes will take place. For rVariables the record

numbers must all be the same. For zVariables the record numbers can vary (but for most
applications will all be the same).

Multiple variable access is sensitive to the record variances of the variables being accessed. (Dimension variances do
not apply since full-physical records are being read/written.) If a variable has a record variance of NOVARY, then a
read/write to that variable will always occur at the first record regardless of the actual record number specified (since at
most only one physical record will ever exist). If the record variance were VARY, the reads/writes would take place at
the actual record numbers specified.

For a multiple variable write operation an application must place into a memory buffer each of the full- physical
records to be written. The order of the full-physical records must correspond to the order of the list of variables
specified, and the memory buffer must be contiguous - there can be no gaps between the full-physical records. This
memory buffer is then passed to the CDF library which scans through the buffer writing the full-physical records to the
corresponding variables.

Likewise, for a multiple variable read operation the CDF library places into a memory buffer provided by the
application the full-physical records read. The order of the full-physical records will correspond to the order of the list
of variables specified and the full-physical records will be contiguous. The application must then process the buffer as
needed.

Care must be used when generating and processing the memory buffer containing the full-physical records. If C struct
objects or Fortran STRUCTURE variables are being used, it may be necessary to order the variables being read/written
such that there are no gaps between elements of the structures (assuming you are defining structures containing one
element per full-physical record where an element is a scalar variable or an array depending on the corresponding
variable definition). On some computers the C and Fortran compilers will place gaps between the elements of these
structures so that memory alignment errors are not generated when the elements are accessed. In general, defining the
structures so that "larger" data types are before "smaller" data types should result in no gaps (e.g., the Fortran REAL*8
data type is "larger" than a INTEGER*2, which is "larger" than a BYTE). The list of variables would be adjusted
accordingly.

The variable majority must also be considered when performing a multiple variable read/write since full-physical
records are being accessed. The majority of the values in the full-physical records retrieved from/placed into the

memory buffer must be the same as the variable majority of the CDF.

For example, consider a column-major CDF containing the following three zVariables (as well as others):

53

zVariable Name Data Spcification Dimensionality Variances

zVarl CDF INT2/14% 0:[] T/
zVar2 CDF _CHAR/7 1:[5] T/T
ZVar3 CDF REALS/1 2:[2,4] T/TT

If a Fortran application were to perform a multiple variable read on these three zVariables, it could define a
STRUCTURE to receive the physical records as follows:

STRUCTURE /inputStruct/
REAL*8 zVar3values(2,4)
INTEGER*2 zVarlvalue
CHARACTER*7 zVar2values(5)
END STRUCTURE

Note that because a full-physical record for the zVariable zVar2 is an odd number of bytes it would most likely cause a
gap in the STRUCTURE if not placed at the end (on some computers). An approach that would work on all computers
would be to use EQUIVALENCE statements as follows:

INTEGER*2 zVarlvalue
CHARACTER*7 zVar2values(5)
REAL*8 zVar3values(2,4)
BYTE buffer(101)

EQUIVALENCE (zVar3values,buffer(1))
EQUIVALENCE (zVarlvalue,buffer(65))
EQUIVALENCE (zVar2values,buffer(67))

The EQUIVALENCE statements ensure that the full-physical records will be contiguous. In each of the above
examples, the order of the zVariables would be zVar3, zVarl, zVar2.

C applications must also be concerned with the ordering of full-physical records in the memory buffer. Even if a void
memory buffer is used with type casting to access individual values, the alignment of the values in the memory buffer
is important (on some computers).

Multiple variable writes are performed using the <PUT ,r/zZVARs RECDATA > operation of the Internal Interface.
Multiple variable reads are performed using the <GET ,r/zZVARs RECDATA > operation. The selection of record
numbers is performed using the <SELECT ,r/7zZVARs RECNUMBER > operation.

2.3.20 Variable Pad Values.

Variable pad® values are used in several situations. .

1. When the first value is written to a new record (for records containing multiple values), the other values in that
record will contain the pad value. This also applies to hyper writes if less than the entire record is written. The
unwritten values will contain the pad value.

2. For a variable not having sparse records, when a new record is written that is more than one record beyond the
last record already written, the intervening records will also be written and will contain pad values. This does
not apply to NRV variables because only one physical record actually exists.

5 This notation is used throughout this document. The data type is before the slash and the number of elements is after
the slash. In this case the data type is (CDF INT2) and the number of elements is one (1).
*These were previously known as fill values but were renamed to avoid confusion with the FILLVAL attribute.

54

3. For a variable having the pad-missing style of sparse records (sRecords.PAD), if a record is read from a gap of
missing records, pad values will be returned. The previous-missing style of sparse records (sRecords.PREV)
would cause the previous existing record's values to be returned (unless there is no previous record in which
case pad values would be returned).

4. When reading a record beyond the last record written for a variable, pad values will be returned except if the
variable has the previous-missing style of sparse records. In that case, the last written record's values are
returned (unless there are no written records in which case pad values are returned).

The pad value for a variable may be specified with the Internal Interface. It should be specified before any values are
read from or written to the variable - otherwise the default pad value will be used. The pad value may be changed at
any time (and any number of times) and will be in effect for all subsequent operations. The default pad value for each
data type are shown in Table 2.8.”

Data Type Default Pad Value
CDF BYTE 0

CDF INTI 0

CDF UINTI1 0

CDF INT2 0

CDF UINT2 0

CDF _INT4 0

CDF_UINT4 0

CDF _REAL4 0.0

CDF_FLOAT 0.0

CDF REALS 0.0

CDF DOUBLE 0.0

CDF_EPOCH 01-Jan-0000 00:00:00.000
CDF _CHAR ' " (space character)
CDF UCHAR " " (space character)

Table 2.8 Default Pad Values.

Variable pad values are specified using the <PUT ,r/zZVAR PADVALUE > operation of the Internal Interface. The
pad value being used for a variable can be inquired with the <GET ,i/zZVAR_PADVALUE > operation. If a pad value
has not been explicitly specified for a variable, the default pad value (based on the variable's data type) will be returned
along with the NO PADVALUE_SPECIFIED informational status code. The existence of an explicitly specified pad
value can be confirmed for a variable (without actually inquiring the wvalue) wusing the
<CONFIRM ,1/zZVAR PADVALUE > operation.

2.4 Attributes

CDF attributes are the mechanism for storing metadata. (Variables are used to store data.) A new attribute may be
created in a CDF at any time.

24.1 Naming

Each attribute in a CDF has a unique name. Attribute names are case sensitive regardless of the operating system being
used and may consist of up to CDF_ ATTR_ NAME_ LEN printable characters (including blanks). Trailing blanks,

2 These default pad values can be changed by your system manager when the CDF distribution is built.

55

however, are ignored when the CDF library compares attribute names. "UNITS" and "UNITS" are considered to be the
same name, so they cannot both exist in the same CDF. This was done because Version 1 of CDF padded attribute
names on the right with blanks out to eight characters. When a Version 1 CDF was converted to a Version 2 CDF these
trailing blanks remained in the attributes names. To allow CDF Version 2 applications to read such a CDF without
having to be concerned with the trailing blanks, the trailing blanks are ignored by the CDF when comparing attributes
names. The trailing blanks are returned as part of the name, however, when an attribute is inquired by an application
program.

2.4.2 Numbering

The attributes in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. The CDF library assigns attribute numbers as the attributes are created. Note that there are not
separate lists of global and variable scoped attributes. Only one list of attributes exists in a CDF (containing both
global and variable scoped attributes).

2.4.3 Attribute Scopes

Attribute scopes declare the intended purpose of an attribute. Global scope attributes (gAttributes) describe some
aspect of the entire CDF. Variable scope attributes (vAttributes) describe some property of each variable.

An attribute's scope exists to assist in the interpretation of its entries by CDF toolkit programs and user applications
(e.g., entries of a vAttribute should correspond to variables). The CDF library also places some restrictions on the
operations that may be performed on an attribute of a particular scope.”® These restrictions consist of the following:

1. A gEntry operation may not be performed on a vAttribute.
2. A zEntry or rEntry operation may not be performed on a gAttribute.
3. While in zMode, only zEntry operations may be performed on vAttributes (see Section 2.1.2).

All other operations involving attributes and their entries remain available.

Assumed Scopes

CDF Version 1 did not allow the scope of an attribute to be explicitly declared. This led to ambiguities in the
interpretation of attribute entries in the toolkit programs and user applications. CDF Version 2 does allow the scope of
an attribute to be declared when the attribute is created. To ease the transition from Version 1 to Version 2, CDF
distributions prior to CDF V2.5 contained the notion of assumed attribute scopes. Assumed attribute scopes arose
when the CDF library had to guess the scope of an attribute in a Version 1 CDF (e.g., when the CDFconvert program
converted a Version 1 CDF to a Version 2 CDF). Beginning withCDF V2.5, all assumed attribute scopes are converted
to the corresponding definite scope. When a CDF is read this conversion occurs only in the CDF library - the CDF is
not physically altered. When an existing CDF is written to, each assumed attribute scope detected will be physically
converted to the corresponding definite scope. Note that if this automatic conversion is incorrect, the scope of an
attribute can be corrected using the Internal Interface in an application program or by editing the CDF with the CDFedit
program.

2.4.4 Deleting

 This was not necessarily the case in previous releases of CDF. These new restrictions should not, however, cause any
conicts with existing applications.

56

An attribute may be deleted from a CDF. Deleting an attribute also deletes the corresponding entries. The disk space
used by the attribute definition and the corresponding entries becomes available for use as needed by the CDF library.
Also, the attributes which numerically follow the attribute being deleted are renumbered immediately. (Each is
decremented by one.) Attributes are deleted using the <DELETE ,ATTR > operation of the Internal Interface.

2.4.5 Attribute Entries

Attribute entries are used to actually store metadata. Each attribute in a CDF may have zero or more associated entries.
For vAttributes two types of entries are supported: rEntries and zEntries. rEntries describe some property of the
corresponding rVariable, and zEntries describe some property of the corresponding zVariable. Note that an entry does
not have to exist for each variable in the CDF. For gAttributes only one type of entry is supported and is referred to as a
gEntry. The gEntries are independent of anything else in the CDF and have meaning only to the application. Note that
gEntries are sometimes referred to simply as "entries."

Accessing

The Standard Interface deals exclusively with rEntries (for vAttributes) and gEntries (for gAttributes). No access to
zEntries is provided. The Internal Interface may be used to access any type of attribute entry.

Numbering

The rEntries and zEntries for a vAttribute and the gEntries for a gAttribute are numbered starting at one (1) for Fortran
applications and starting at zero (0) for C applications. For vAttributes the entry numbers are in fact the variable
numbers of the variables being described. rEntries correspond to rVariables and zEntries correspond to zVariables.
For gAttributes the gEntry numbers have meaning only to the application.

The entry numbers used need not be contiguous (as are variable and attribute numbers). An application may choose to
write any combination of entries for a particular attribute (keeping in mind that the entry numbers used for a vAttribute
correspond to the existing variables).

Data Specification

Each entry for an attribute has a data specification and an associated value. A data specification consists of a data type
and a number of elements of that data type. The supported data types are described in Section 2.5. The entries for an
attribute may have any combination of data specifications.

For character data types the number of elements is the number of characters in the string. For example, if a gEntry
value for a gAttribute named TITLE were "Example CDF Title." (not including the double quotes), the data type would
be CDF_CHAR, and the number of elements would be 18 (a character string of size 18).

For non-character data types the number of elements is the size of an array of the data type. For example, if a zEntry
value of a vAttribute named RANGE were [100.0,900.0], the data type would be CDF_REALA4, and the number of
elements would be two (an array of two values).

Deleting
An entry may be deleted from an attribute. The disk space used by the entry becomes available for use as needed by
the CDF library. There is no renumbering of entries (as with deleting a variable or attribute). Entries are deleted using

the <DELETE ,gENTRY >, <DELETE ,rENTRY >, and <DELETE ,zZENTRY > operations of the Internal
Interface.

57

2.5 Data Types

CDF supports a variety of data types consistent with the types available with C and Fortran compilers on most
computers. All data types are based on an 8-bit byte. The size of an element of a data type is the same regardless of
the computer/operating system being used. The <GET ,DATATYPE_SIZE > operation of the Internal Interface may
be used to inquire the size in bytes of a particular data type.

2.5.1 Integer Data Types

CDF BYTE 1-byte, signed integer.
CDF_INTI1 1-byte, signed integer.
CDF _UINT1 1-byte, unsigned integer.
CDF INT2 2-byte, signed integer.
CDF _UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.

NOTE: When using C on a DEC Alpha running OSF/1, keep in mind that a long is 8 bytes and that an int is 4 bytes.
Use an int with the data types CDF_INT4 and CDF_UINT#4 rather than a long.

NOTE: When using C on a PC under MS-DOS, keep in mind that an int is most likely 2 bytes and that a long is 4
bytes. Use a long with the data types CDF_INT4 and CDF_UINT4 rather than an int.

2.5.2 Floating Point Data Types

CDF REAL4 & CDF FLOAT 4-byte, single-precision floating-point.
CDF_REAL8 & CDF DOUBLE 8-byte, double-precision floating-point.

A special case exists with respect to the value -0.0 (negative floating-point zero). This value is legal on those
computers that use the IEEE 754 floating-point representation (e.g., most UNIX-based computers and the PC) but is
illegal on VAXes and DEC Alphas running OpenVMS. Attempting to use -0.0 will result in a reserved operand fault on
a VAX and a high performance arithmetic fault on a DEC Alpha running OpenVMS. A warning is returned whenever -
0.0 is read by an application on a VAX or DEC Alpha running OpenVMS. The CDF library can be put into a mode
where -0.0 will be converted to 0.0 when detected (see Section 2.1.2). If -0.0 is not being converted to 0.0, the CDF
toolkit programs are designed to display -0.0 in all cases. This includes those computers that normally suppress the
negative sign.

2.5.3 Character Data Types

CDF_CHAR 1-byte, character.
CDF_UCHAR 1-byte, unsigned character.

Character data types are unique for variables in that they are the only data types for which more than one element per

value is allowed. Each variable value consists of a character string with the number of elements being the number of
characters. More than one element is allowed for any of the data types when dealing with attribute entries.

58

254 EPOCH Data Type
CDF_EPOCH 8-byte, double precision floating point.
The CDF_EPOCH data type is used to store time values referenced from a particular epoch. For NSSDC applications
that epoch is 01-Jan-0000 00:00:00.000.” CDF_EPOCH values are the number of milliseconds since the epoch. The
standard format used to display a CDF_EPOCH value is
dd-mmm-yyyy hh:mm:ss.ccc
where dd is the day of the month (01-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, or Dec), yyyy is the year (0000-9999) hh is the hour (00-23), mm is the minute (00-59), ss is the
second (00-59), and ccc is the millisecond (000-999).

Functions exist that parse, encode, compute, and decompose CDF_EPOCH values. These functions are described in the
CDF C Reference Manual for C applications and in the CDF Fortran Reference Manual for Fortran applications.

2.5.5 Equivalent Data Types

Certain data types are considered equivalent with respect to their representation in memory and in a CDF. Table 2.9
shows the groups of equivalent data types.

CDF_CHAR CDF_INT2 CDF_INT4 CDF_REAL4 CDF_REALS
CDF_UCHAR CDF_UINT2 CDF_UINT4 CDF_FLOAT CDF_DOUBLE
CDF_INTI1 CDF_EPOCH
CDF_UINTI

CDF BYTE

Table 2.9 Equivalent Data Types

Note that while the signed and unsigned forms of a data type are considered equivalent by the CDF library, they must
be correctly interpreted by an application to produce the desired results.

2.6 Compression Algorithms

Several compression algorithms are supported by the CDF library. Selecting the proper algorithm to use will depend on
the characteristics of the data being compressed. Experimentation with the available algorithms on the CDF or variable
being compressed will also be necessary. The following sections describe each compression algorithm, any associated
parameters, and the types of data for which they are appropriate.

2.6.1 Run-Length Encoding

¥ T know what you're thinking. The year 0 AD never existed. If it makes you feel better, think of the epoch year as 1
BC (or simply year 0) rather than 0 AD. Also, year 0 is considered to be a leap year.

59

The run-length encoding compression algorithm, RLE_COMPRESSION, takes advantage of repeating bytes in the
data. Currently, only the run-length encoding of zeros (0's) is supported. RLE_COMPRESSION has one parameter
which must be set to RLE OF ZEROs. The notation RLE.O is used for this type of RLE compression.

2.6.2 Huffman

The Huffman compression algorithm, HUFF_COMPRESSION, takes advantage of the frequency at which certain byte
values occur in the data. A sequence of bytes that contain a high percentage of a limited number of byte values will
compress better than if each byte value occurs with equal probability. HUFF COMPRESSION has one parameter
which must be set to OPTIMAL _ENCODING TREES.** The notation HUFF.0 is used for this type of HUFF
compression.

2.6.3 Adaptive Huffman

The adaptive Huffman compression algorithm, AHUFF COMPRESSION, also takes advantage of the frequency at
which certain byte values occur in the data. AHUFF _COMPRESSION is very similar to HUFF_ COMPRESSION and
generally provides slightly better compression. AHUFF_COMPRESSION has one parameter which must be set to
OPTIMAL ENCODING_TREES. The notation AHUFF.O is used for this type of AHUFF compression.

2,64 GZIP

The Gnu ZIP compression algorithm, GZIP_ COMPRESSION, uses the Lempel-Ziv coding (LZ77) taking advantage of
common substrings within the data. Significant compression occurs over a wide variety of data
sets.GZIP_ COMPRESSION has one parameter which may be set to a level value in the range from 1 (one) to 9 (nine).
1 provides the least amount of compression and executes the fastest. 9 provides the most compression but executes the
slowest. Levels between 1 and 9 allow for a trade-off between compression and execution speed. The notation
GZIP <level> is used for GZIP compression where <level> is a value from 1 to 9. For example, GZIP.7 specifies a
level of 7.

NOTE: GZIP compression is disabled for PCs running 16-bit DOS/Windows 3.x due to their memory constraint.

3 OPTIMAL ENCODING TREES causes each buffer of data to be scanned for the best possible compression. An
alternative method would be to scan the first buffer being compressed and then use the same byte value frequencies for
subsequent buffers.

60

Chapter 3

Toolkit Reference

3.1

Introduction

The CDF toolkit is a set of utility programs that allow the creation, analysis, and modification of CDFs. The following
sections will describe the use of these programs.

NOTE: Java version of the CDF toolkit' is available starting with CDF 2.7, and it is only available for the Unix

3.1.1

platform since the CDF toolkit provided for the Window 95/98/NT and Macintosh platforms are already
Graphical User Interface (GUI) based programs.

VMS, UNIX & MS-DOS

Each program is executed at the command line (or may be executed from within your applications using the methods
provided by the operating system being used). The following rules apply to the command line syntax:

1.

Parameters are required unless noted otherwise. Parameters are shown in angle brackets (<>'s) in the sections
which describe each toolkit program.

Qualifiers are optional unless noted otherwise.

. Qualifiers can be truncated as long as no ambiguities result.

Optional parts of a command are shown in brackets ([]'s) in the sections which describe each toolkit program.

A vertical line (]) is used to separate two or more options in those cases when only one of the options may be
specified.

Wildcard characters are allowed in CDF names to allow more than one CDF to be specified (where
appropriate). Wildcard characters may be used in the CDF name but not the directory path portion of a
specification. The wildcard characters supported are similar to those available on the operating system being
used.

UNIX: If a CDF specification is to contain a wildcard character, the entire specification must be
enclosed in single quote marks (e.g., '/disk3/sst*").

' CDFedit and CDFexport are not yet available. You can still use the Curses-based tools from the distribution.

61

7. On VMS/OpenVMS systems, qualifiers begin with a slash (/). On UNIX and MS-DOS systems, qualifiers
begin with a hyphen (-).

NOTE: You can override the default notation by specifying a slash or hyphen as the first parameter/qualifier
immediately after the program name. When this is done, you may have to adjust the syntax used as follows:

(a) When the slash notation is used on UNIX systems, character string will be necessary in the file names (e.g.,
specify "//disk1//CDFs" rather than "/distl/CDFs"). Also, double quote marks are required around options
enclosed in parenthesis.

(b) When the slash notation is used on MS-DOS systems, double quote marks may be needed around entire
qualifier/option combinations.

8. On MS-DOS systems the executable names may be different from the names shown in this chapter (file names
are limited to 8.3 characters). Where the names differ, the actual name will be noted.

If you add the directory containing the toolkit executables to your path, you will have to use the 8-character (or
fewer) names. If you use a command aliasing program, you could specify the aliases to be the names shown in
this chapter with each pointing to the corresponding executable file name.

9. On UNIX systems all parameters/qualifiers entered at the command line are case sensitive. On VMS,
OpenVMS, and MS-DOS systems parameters/qualifiers are not case sensitive. Note that variable names are
always case sensitive regardless of the operating system being used.

10. If an option contains blanks, it will generally be necessary to enclose the entire option in double quote marks.
11. On UNIX systems, it may be necessary to execute "stty tab3" before running CDFedit or CDFexport.

12. Some of the toolkit programs have a "paging" qualifier. Paging is not allowed if the output of the program has
been directed to a file.

13. Most toolkit programs have an "about" qualifier that can be used to determine the CDF distribution from
which the program came. On the Macintosh, an "about" selection is available on the "apple" pull-down menu.

In the following sections the available qualifiers and options for each of the toolkit programs will be presented. The
default settings for these qualifiers and options will not be shown since they can be configured for a particular CDF
distribution. Use CDFinquire to determine these defaults.

On VMS/OpenVMS systems you should have executed the command procedure named DEFINITIONS.COM before
running any of the CDF toolkit programs. This will define the necessary logical names and symbols. Your system
administrator knows the location of DEFINITIONS.COM.

On UNIX systems you should have source'd (or equivalent) the script file named definitions.<shell-type> where
<shell-type> is the type of shell you are using: C for the C-shell (csh) and tcsh, K for the Korn (ksh), BASH, and
POSIX shells, and B for the Bourne shell (sh). This will define the necessary environment variables and aliases. Your
system administrator knows the location of definitions.<shell-type>.

3.1.2 Macintosh
Each toolkit program is started by double-clicking on the appropriate icon. A dialog box will be displayed in which the
parameters and qualifiers needed to execute the program are specified. When the parameters/qualifiers have been

selected, clicking on Enter causes the initial execution to begin.

For the programs that use a full-screen interface (e.g., CDFedit and CDFexport), a "pasteboard" window is opened in
which the program displays menus, prompts, etc. When the "pasteboard" window is closed (by exiting the execution),

62

the parameters/qualifiers dialog box is redisplayed. A new set of parameters/qualifiers may be selected and executed or
the program may be terminated.

For the programs that simply output to the screen (e.g., CDFstats, CDFcompare, and CDFinquire), a "standard output"
window is opened in which the output will be written. When the execution completes, the "apple" and File menus are
available in the menu bar. Under the File menu the following commands are available:

Execute Causes the parameters/qualifiers dialog box to be redisplayed. A new set of parameters/qualifiers
may be selected and executed. The output from each execution is appended to the existing output.

Save Saves the current output to a file named <program-name>.so where <program-name> is the name
of the program.

Save as... Saves the current output to the file specified in the standard output file dialog box that will be
displayed.

Clear Clears the current output.

Quit Terminates the program.

The vertical scroll bar as well as the page up and page down keys may be used to scroll through the output. When a
large amount of text has been written, a dialog box may be displayed indicating that an output overow is about to occur.
The output may be saved to a file before being cleared (to allow the execution to continue).

The parameters/qualifiers dialog box for each program uses the standard Macintosh controls. Edit fields are used to
enter text values (e.g., the file name of a CDF). Leaving an edit field blank is allowed in some cases (which will be
noted). Check boxes are used to enable or disable a qualifier. An X in the check box indicates that the qualifier is
enabled. Radio buttons are used in groups to allow one of several options to be chosen for a qualifier. Generally, only
one of the radio buttons in a group may be selected.

Several types of files are specified to the toolkit programs. These consist of CDFs, skeleton tables, and output files. In
a parameters/qualifiers dialog box edit field or a toolkit program's prompt field a file must be specified using a full or
partial file name. Full file names consist of a volume name (which is also the corresponding folder name), zero or
more folder names, and finally the file name (with or without an extension). These are all separated by semi-colons
(:'s). Partial file names do not start with a volume name and may start with or without a semi-colon. If a partial file
name starts with a semi-colon, one or more folder names will follow, each separated by a semi-colon, followed by the
file name. The first folder must exist in the currently selected folder. If a partial file name starts without a semi-colon,
then only a file name should be present and the file is (or will be) located in the currently selected folder. To ease in
the selection of files in parameters/qualifiers dialog boxes, the corresponding edit fields are followed by a Select
button. When clicked on, a standard input/output file dialog will be displayed in which a file may be specified. When
that has been done the file name of the selected file will appear in the edit field.

A directory/wildcard® specification is allowed for some of the CDF specifications required by the toolkit programs.
This allows more than one of the CDFs in a directory to be selected. If a CDF specification ends with a folder name,
then all of the CDFs in that folder will have been specified. A trailing semi-colon is not required (but may be present).
The supported wildcard characters are the asterick (*) which matches zero or more characters and the question mark (?)
which matches exactly one character.

In the following sections the available qualifiers and options for each of the toolkit programs will be presented. The
default settings for these qualifiers and options will not be shown since they can be configured for a particular CDF
distribution. When a program is started, the settings shown in the initial parameters/qualifiers dialog box are the
default qualifiers for your CDF distribution.

? Macintosh folders are equivalent to the directories discussed here.

63

NOTE: You may find it necessary to increase the partition size available to a toolkit program when dealing with very
large CDFs. You can do this by editing the "current size" field of the window opened when using the Get Info item of
the File menu (from the Desktop menu bar) on the toolkit executable.

3.1.3 Windows NT/95/98

Two excutable programs (i.e. CDFfsi.exe & CDFso.exe) are provided as part of the standard distribution package, and
each program contains the following CDF utilities/tools:

CDFfsi.exe CDFso.exe

CDFedit CDFcompare

CDFexport CDFconvert
CDFinquire
CDFdump
CDFstats
SkeletonCDF
SkeletonTable

A CDF utility/tool can be invoked by running CDFfsi.exe or CDFso.exe and selecting the tool listed under the File
menu. For example, the SkeletonCDF utility can be invoked by running the CDfso.exe program and then selecting the
SkeletonCDF option under the File menu.

3.14 Java Version of the CDF Toolkit

Java version of the CDF toolkit is available starting with CDF 2.7. A desired CDF tool can be invoked by typing "java
CDFToolsDriver" at the system prompt and selecting the CDF tool with a single click.

Environment variable called CLASSPATH must be set to point to the location (full path name) of the cdftools.jar file
that is located under the cdf27-dist/cdfjava/tools jdk1.2 directory. If this environment variable is not set, the "java
CDFToolsDriver" command will not work.

3.1.5 Special Attributes

There is a set of vAttributes that have special meaning to some of the CDF toolkit programs.® Your CDFs

do not have to use these special attributes. The CDF toolkit programs will function properly whether or not these
special attributes are present in a CDF. How the entries of each vAttribute are used for the corresponding variables is
as follows:

FORMAT A Fortran or C format specification that is used when displaying a variable value.
VALIDMIN The minimum valid value for a variable.

VALIDMAX The maximum valid value for a variable.

FILLVAL The value used for missing or invalid variable values.*

MONOTON The monotonicity of a variable: INCREASE (strictly increasing values), DECREASE

(strictly decreasing values), or FALSE (not monotonic). Monotonicity only applies to

3 These special attributes originated as part of the NSSDC standard for CDFs. The NSSDC standard is no longer used.
* Note that the FILLVAL attribute is not the same as the pad value for a variable although their values will often be the
same.The pad value is used by the CDF library. The FILLVAL attribute is optionally used by a CDF toolkit program
or by your applications.

64

NRV variables that vary along one dimension and RV variables that vary along no

dimensions.
SCALEMIN The minimum value for scaling a variable when graphically displaying its values.
SCALEMAX The maximum value for scaling a variable when graphically displaying its values.In the

description of each CDF toolkit program, the special attributes that may affect that
program's operation are defined. Note that most of the CDF toolkit programs can be
instructed to ignore these special attributes.

3.1.6 Special Qualifier

There is a special qualifier applied to all toolkit programs. This qualifier, as "-about" on all platforms except
Macintosh, will show version, release and increment information of the distribution that the toolkit program is based
on. This special qualifier, if present, supersedes all other qualifiers and parameters.

3.2 CDFedit

3.2.1 Introduction
The CDFedit program allows the display and/or modification of practically all of the contents of a CDF by way of a

full-screen interface. It is also possible to run CDFedit in a browse-only mode in order to prevent accidental
modifications.’

3.2.2 Special Attribute Usage

The special attribute FORMAT is used by CDFedit (depending on the setting of the "format" qualifier) when displaying
variable values.

3.2.3 Executing the CDFedit Program

Usage:
VMS:

$ CDFEDIT [/ [NO]BROWSE] [/ZMODE=<mode>] [/[NO]FORMAT] [/[NO]PROMPT]
[/ [NO]NEG2POSFP0] [/REPORT=(<types>)] [/CACHE=(<sizes>)]
[/[NO]STATISTICS] [/[NO]JGWITHENTRIES] [/[NO]JVWITHENTRIES]
<cdf-spec>

UNIX:

% cdfedit [-[no]lbrowse] [-zmode <mode>] [-[no]format] [-[no]prompt]
[-[nolneg2posfp0] [-report "<types>"] [-cache "<sizes>"]
[-[no]lstatistics] [-[no]lgwithentries] [-[no]vwithentries]
<cdf-spec>

MS-DOS:
> cdfedit [-[no]lbrowse] [-zmode <mode>] [-[no]format] [-[no]lprompt]

> Running CDFedit in a browse-only mode provides the same functionality as CDFbrowse once did.

65

[-[nolneg2posfpl0] [-report "<types>"] [-cache "<sizes>"]
[-[nolstatistics] [-[no]lgwithentries] [-[no]lvwithentries]
<cdf-spec>

Macintosh:
Double-click on the CDFedit icon.

Windows NT/95/98:
Double-click on the CDFfsi icon and select the CDFedit option under the File menu.

Java/UNIX:
This option is not yet available in the Java toolkit for Unix.

Macintosh & Windows N'T/95/98:
When the desired parameters/qualifiers have been selected in the dialog box, click on the Enter button to begin
editing the CDF. Clicking on the Help button will display online help. Clicking on the Quit button terminates
CDFedit.

Parameter(s):

<cdf-spec> (VMS, UNIX & MS-DOS)
CDF edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The specification of the CDF(s) to edit. (Do not specify an extension.) This may be either a single CDF file
name or a directory/wildcard path. Wildcards are allowed in the CDF name but not in the directory path. If
the "prompt" qualifier is used, this will appear as the initial specification at the prompt. If this parameter is
omitted, the "prompt" qualifier must be specified (and the initial specification at the prompt will be the
default/current directory).

Macintosh & Windows NT/95/98: At the end of the CDF edit field, a button labeled Select is present. When
selected, a standard input file dialog is displayed from which a single CDF may be selected. Also present is a

button labeled New. When selected, a standard output file dialog is displayed in which a single CDF may be
specified.

Qualifier(s):
/[NO]BROWSE (VMS)
-[no]browse (UNIX & MS-DOS)

Browse only check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a browsing mode is desired. In browsing mode the creation, modification, or deletion
of a CDF is not allowed.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies which zMode should be used. The zMode may be one of the following:
0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

66

/[NOJFORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/[NOJPROMPT (VMS)
-[no]prompt (UNIX & MS-DOS)
Prompt for CDF check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a prompt is issued for the CDF(s) specification. When enabled the prompt will be
issued both at program startup and after editing the current CDF(s) specification (at which point a new CDEF[s]
specification may be specified).

VMS, UNIX & MS-DOS: If a CDF(s) specification was entered on the command line, that CDF(s)
specification will appear at the prompt. (Otherwise, the current/default directory will appear at the prompt.)

Macintosh, Java/UNIX & Windows NT/95/98: If a CDF(s) specification was entered in
the CDF edit field, that CDF(s) specification will appear at the prompt. (Otherwise, the current directory will
appear at the prompt.)

/INOINEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and 1).

/CACHE=(<sizes>) (VMS)

-cache "<sizes>" (UNIX & MS-DOS)

Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]JSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

67

Specifies whether or not caching statistics are displayed when a CDF is closed.

/INO]JGWITHENTRIES (VMS)

-[no]gwithentries (UNIX & MS-DOS)

gEntries with gAttributes check box (Macintosh & Java/UNIX)
with gEntries check box (Windows NT/95/98)

Specifies whether or not gEntries are displayed with the gAttributes or on separate menus (with one menu per
gAttribute).

/INOJVWITHENTRIES (VMS)

-[no]vwithentries (UNIX & MS-DOS)

rEntries/zEntries with vAttributes check box (Macintosh & Java/UNIX)
with r/zEntries check box (Windows NT/95/98)

Specifies whether or not rEntries/zEntries are displayed with the vAttributes or on separate menus (with one
menu per VAttribute).
Example(s):
VMS:

$ CDFEDIT [.SAMPLES]

$ CDFEDIT/ZMODE=2/NOFORMAT/CACHE=(10D,100S,200C) GISS WETLX
$ CDFEDIT/BROWSE/PROMPT/REPORT= (ERRORS)
UNIX:
% cdfedit samples
% cdfedit -zmode 2 -noformat -cache "10d,100s,200c" giss wetl
% cdfedit -browse -prompt -report "errors"
MS-DOS:

> cdfedit samples
> cdfedit -zmode 2 -noformat -cache "10d,100s,200c¢" giss_wetl > cdfedit -browse -prompt -report "errors"

3.24 Interaction with CDFedit

Interaction with CDFedit is through a series of menus and windows. Extensive online help is provided and will not be
repeated here.® The online help does refer to the sections of a window by name. Figure 3.1 illustrates the various
sections of the possible types of windows.

%It is our intention that the use of CDFedit be as intuitive as possible. You may not even need the online help. We're
sure you'll let us know.

68

ItemWindow PromptWindow EditWindow

4| Label I || Label { I Label |—

HeaderSection HeaderSection HeaderSection
PromptField
ItemSection —— EditSection
TrailerSection
TrailerSection TrailerSection

Figure 3.1 Window Sections, CDFedit

ItemWindows are used when a choice is to be made from a list of one or more items (e.g., functions to perform, CDFs
to edit, variable names, etc.). In some cases the entire list of items may not fit on the screen at once. When this occurs,
the ItemSection may be scrolled to display hidden items. Some ItemWindows have a percentage indicator at the
bottom right portion of the ItemSection. The percentage indicator shows which part of the ItemSection is being
displayed.

PromptWindows are used when a textual response is required (e.g., a CDF specification, a new attribute name, a
variable value, etc.). If the text is too long to fit into the PromptField, the "more" indicators ("<" and ">") at the left
and right ends of the PromptField will display where hidden characters exist.

EditWindows are used to display/edit a text file or group of lines. EditWindows are currently used to display online
help and to edit gAttribute character string entries as if they were a text file.

3.3 CDFexport

3.3.1 Introduction
CDFexport allows the contents of a CDF to be exported to the terminal screen, a text file, or another CDF. The
variables to be exported can be selected along with a filter range for each variable which allows a subset of the CDF to

be generated. When exporting to another CDF, a new compression and sparseness can be specified for each variable.
When exporting to the terminal screen or a text file, the format of the output can be tailored as necessary.

3.3.2 Special Attribute Usage

CDFexport uses the following special attributes:

FORMAT Used as the initial value in a variable's Format field.
VALIDMIN Used as the initial filter value in a variable's Minimum field.
VALIDMAX Used as the initial filter value in a variable's Maximum field.
FILLVAL Used as the initial value in a variable's FillValue field.
MONOTON Used as the initial setting in a variable's Monotonicity field.

69

These fields are described in the online help for the appropriate menu. The values of these fields can be changed at any
time. The special attributes are simply used to provide initial values. Note also that the usage of these special
attributes can be controlled by the options selected with the "initial" qualifier.

3.3.3 Executing the CDFexport Program
Usage:
VMS:

$ CDFEXPORT [/INITIAL=(<options>)] [/[NO]PROMPT] [/ZMODE=<mode>]
[/REPORT= (<types>)] [/[NO]JSTATISTICS] [/[NO]NEG2POSFPO]
[/CACHE= (<sizes>)] [/[NO]SIMPLE] [/BATCH=<mode>] [/CDF=<path>]
[/TEXT=<path>] [/SETTINGS=<path>] <cdf-spec>

UNIX:
% cdfexport [-initial "<options>"] [-[no]prompt] [-zmode <mode>]
[-report "<types>"] [-[no]lstatistics] [- [no]lneg2posfp0]
[-cache "<sizes>"] [-[no]simple] [-batch <mode>] [-cdf <path>]
[-text <path>] [-settings <path>] <cdf-spec>
MS-DOS:’
> cdfexport [-initial "<options>"] [-[no]prompt] [-zmode <mode>]
[-report "<types>"] [-[no]statistics] [-[no]lneg2posfpl]
[-cache "<sizes>"] [-[no]simple] [-batch <mode>] [-cdf <path>]
[-text <path>] [-settings <path>] <cdf-spec>
Macintosh:

Double-click on the CDFexport icon.
Windows NT/95/98:

Double-click on the CDFfsi icon and select the CDFexport option under the File menu.
Java/UNIX:

This option is not yet available in the Java toolkit for Unix.
Macintosh & Windows NT/95/98: When the desired parameters/qualifiers have been selected in the dialog box, click
on the Enter button to begin exporting from the CDF(s). Clicking on the Help button will display online help. Clicking
on the Quit button terminates CDFexport.

Parameter(s):

<cdf-spec> (VMS, UNIX & MS-DOS)
CDF edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The specification of the CDF(s) from which to export. Do not specify an extension. This may be either a
single CDF file name or a directory/wildcard path. Wildcards are allowed in the CDF name but not in the
directory path.

7 On MS-DOS systems the executable is named CDFXP.EXE.

70

VMS, UNIX & MS-DOS: If the "prompt" qualifier is used, this will appear as the initial specification. If
this parameter is omitted, the "prompt" qualifier must be specified and the initial specification will be the
current directory.

Macintosh & Windows NT/95/98: At the end of the CDF edit field, a button labeled Select is present.
When selected, a standard input file dialog is displayed from which a single
CDF may be selected.

Qualifier(s):

/[INOJPROMPT (VMS)
-[no]prompt (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a prompt is issued for the CDF(s) specification. If this qualifier is not specified, the
CDEF(s) specification must be entered on the command line and is automatically opened.

VMS, UNIX & MS-DOS: If a CDF(s) specification was entered on the command line, that CDF(s)
specification will initially appear at the prompt. Otherwise, the current directory will appear at the prompt.

Macintosh, Java/UNIX & Windows NT/95/98: This qualifier is not applicable on the Macintosh. The
CDF(s) specification must always be entered in the dialog box and is then automatically opened.

/INITTAL=(<defaults>) (VMS)
-initial "<defaults>" (UNIX & MS-DOS)
Initial options check boxes, see below (Macintosh, Java/UNIX & Windows NT/95/98)

The default settings that are initially in affect when a CDF is opened. These setting are only the settings
initially in effect. The user may change any of them at any time. More detailed descriptions of each option
may be found in the appropriate sections that follow.

VMS, UNIX & MS-DOS: <defaults> is a comma-separated list of settings consisting of one
or more of the options in the list that follows. Macintosh, Java/UNIX & Windows NT/95/98: The initial
settings are selected using the check boxes described in the list that follows.

[NOJFILTER (VMS)
[no]filter (UNIX & MS-DOS)
Filters enabled check box (Macintosh, Java/UNIX & Windows NT/95/98)

Whether or not each item/variable is initially filtered.

[NOJFILLS (VMS)

[no]fills (UNIX & MS-DOS)

Use fills check box (Macintosh, Java/UNIX & Windows NT/95/98)
Whether or not the use of fill values is enabled.

[NOJFORMAT (VMS)

[no]format (UNIX & MS-DOS)

Use FORMAT check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a variable's FORMAT attribute entry is used as its initial "format" field.

[NOJFILLVAL (VMS)

71

[no]fillval (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a variable's FILLVAL attribute entry is used as its initial "fill value" field.

[NOJVALIDMIN (VMS)
[no]validmin (UNIX & MS-DOS)
Use VALIDMIN check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a variable's VALIDMIN attribute entry is used as its initial minimum filter
value.

[NO]JVALIDMAX (VMS)
[no]validmax (UNIX & MS-DOS)
Use VALIDMAX check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a variable's VALIDMAX attribute entry is used as its initial maximum filter
value.

[NOJMONOTON (VMS)
[noJmonoton (UNIX & MS-DOS)
Use MONOTON check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a variable's MONOTON attribute entry is used as its initial monotonicity.

[NOJRECORD (VMS)

[no]record (UNIX & MS-DOS)

Show 'Record' check box (Macintosh & Java/UNIX)
Show records check box (Windows NT/95/98)

Specifies whether or not the Record item will be present.

[NOJINDICES (VMS)

[no]indices (UNIX & MS-DOS)

Show ‘Indices' check box (Macintosh & Java/UNIX)
Show indices check box (Windows NT/95/98)

Specifies whether or not the Indices item will be present.

[NOJEXCLUSIVE (VMS)
[noJexclusive (UNIX & MS-DOS)
Exclusive filters check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not exclusive filters are allowed.
[NOJOUTPUT (VMS)
[no]output (UNIX & MS-DOS)
Outputs enabled check box (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies whether or not each item/variable is initially output.
[NO]DELETE (VMS)

[no]delete (UNIX & MS-DOS)
Delete existing CDF check box (Macintosh, Java/UNIX & Windows NT/95/98)

72

Specifies the initial setting of whether or not an existing CDF will be deleted when a new CDF is
created with the same name.

[NOJPREALLOCATE (VMS)
[no]preallocate (UNIX & MS-DOS)
Preallocate records check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the initial setting of whether or not variable records are to be preallocated when creating a
new CDF.

SINGLE or MULTI (VMS)

single or multi (UNIX & MS-DOS)

New format radio buttons (Macintosh & Java/UNIX)
Format radio buttons (Windows NT/95/98)

Specifies the initial setting of whether single-file or multi-file CDFs are created.

HOST or NETWORK (VMS)

host or network (UNIX & MS-DOS)

New encoding radio buttons (Macintosh & Java/UNIX)
Encoding radio buttons (Windows NT/95/98)

Specifies the initial setting of whether host-encoded or network-encoded CDFs are created.

ROW or COLUMN (VMS)
row or column (UNIX & MS-DOS)
Majority radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the initial setting of whether row-major, column-major, or input-major CDFs/listings are
generated. Input-majority is the majority of the input CDF.

VMS, UNIX & MS-DOS: Input-majority is selected by specifying neither row-majority nor column-
majority.

EPOCH, EPOCH1, EPOCH2, EPOCH3, EPOCHf or EPOCHx (VMS)
epoch, epochl, epoch2, epoch3, epochf or epochx (UNIX & MS-DOS)
EPOCH style radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the initial EPOCH encoding style.
HORIZONTAL or VERTICAL (VMS)
horizontal or vertical (UNIX & MS-DOS)
Orientation radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the initial setting of whether horizontal or vertical listings are generated.

Note that these options can be changed at any time after the CDF has been opened. If this qualifier is not
specified, each of these options has a default setting. These default settings are also used for options not
specified with this qualifier.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies which zMode should be used. The zMode may be one of the following:

73

0 Indicates that zMode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/[NOJNEG2POSFPO0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and 1).

/CACHE=(<sizes>) (VMS) -cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[INOJSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

Specifies whether or not caching statistics are displayed when a CDF is closed.
/[INO]SIMPLE (VMS)
-[no]simple (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies if a simplified version of CDFexport should be executed. The following conditions apply to simple
mode:

Only text listings can be generated (to the screen or a file).

No filtering is available.

When listing to a text file, FORMAT attribute entries are ignored and standard formats are used instead.

Only a limited set of the options for the “initial' qualifier may be specified.

74

- zMode/2 is used by default.
- Horizontal listings are created by default.

/BATCH=<mode> (VMYS)
-batch <mode> (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies if CDFexport should execute in a non-interactive batch mode. The mode option may be either "text"
to generate a text file listing or "cdf" to output to a new CDF. A settings file will be used if one exists with the
default name in the current directory or is explicitly specified with the ‘settings' qualifier. The settings file
contains the parameters necessary to specify how the output CDF or text file should be generated. If a settings
file is not available, default parameters will be used. CDFexport must be used interactively to create a settings
file.

/CDF=<cdf> (VMS)
-cdf <cdf> (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies an output CDF file name to be used when exporting to a CDF in batch mode. Do not include an
extension. When executing interactively, this file name will initially appear at the output CDF prompt. If this
qualifier is not specified, the default CDF name is "default" (in the current directory).

/TEXT=<path> (VMS)
-text <path> (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies a file name to be used when exporting to a text file listing in batch mode. When executing
interactively this file name will initially appear at the text file prompt. If this qualifier is not specified, the
default text file name is "default.lis" (in the current directory).

/SETTINGS=<path> (VMS) -settings <path> (UNIX & MS-DOS)
Not applicable. (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies a settings file name to be used when executing in batch mode. When executing interactively this file
name will initially appear at the settings file prompt when saving/restoring the current settings. The default
settings file is "simple.set" if executing in simple mode and "export.set" otherwise (with each being in the
current directory).

Example(s):
VMS:

CDFEXPORT [.SAMPLES]

CDFEXPORT/ZMODE=2/CACHE= (50d, 100s) GISS WETLX
CDFEXPORT/PROMPT/REPORT= (W, E) /INITIAL= (EXCLUSIVE, NOFORMAT)
CDFEXPORT/SIMPLE/BATCH=TEXT/TEXT=FLUX.OUT FLUX1996

Uy 0 U Uy

UNIX:

% cdfexport samples

% cdfexport -zmode 2 -cache "50d,100s" giss wetl

% cdfexport -prompt -report "w,e" -initial "exclusive,noformat"
% cdfexport -simple -batch text -text flux.out flux1996

75

MS-DOS:
> cdfexport samples

> cdfexport -zmode 2 -cache "50d,100s" giss_wetl
> cdfexport -prompt -report "w,e" -initial "exclusive,noformat"

3.3.4 Interaction with CDFexport

Interaction with CDFexport is through a 4-part SelectionWindow, an ActionMenu, an OptionMenu, numerous prompt
windows, and several screen listing windows. Detailed online help is available for each window so only a brief
description of each will be given here. After selecting a CDF from which to export, part 1 of the SelectionWindow will
be loaded with a line for the <Record> item, the <Indices> item, and each variable. The <Record> item allows the
record number to be included in a screen/file listing and/or filtering on the record number for any type of output. The
<Indices> item allows the dimension indices to be included in a screen/file listing and/or filtering on the dimension
indices for any type of output. Each variable line allows that variable to be included and/or filtered when generating
any type of output. The KeyDefinitions window displays the available functions and their corresponding keys for a
given window/prompt. The MessageBuffer displays errors/instructions as necessary.

Cycling through the four parts of the SelectionWindow allows the selection of the output to be generated. The online
help explains the purpose of each field in the four parts of the SelectionWindow. The OptionMenu allows additional
selections affecting the output. The ActionMenu is then used to generate the desired type of output (as well as some
other miscellaneous operations).

The easiest way to learn how to use CDFexport is to read through the online help while generating the various types of
output using a CDF with which you are familiar.

34 CDFconvert

3.4.1 Introduction

The CDFconvert program is used to convert various properties of a CDF. In all cases new CDFs are created. (Existing
CDFs are not modified.) Any combination of the following properties may be changed when converting a CDF.

1. The format of the CDF may be changed (see Section 2.2.7).

2. The data encoding of the CDF may be changed (see Section 2.2.8).

3. The variable majority of the CDF may be changed (see Section 2.3.15).

4. The compression of the CDF (see Section 2.2.10) or the CDF's variables (see Section 2.3.14) may be changed.

5. The sparseness of the CDF's variables may be changed (see Sections 2.3.12 and 2.3.13).

3.4.2 Executing the CDFconvert Program

Usage:

76

VMS:

$ CDFCONVERT [/SKELETON=<skt-cdf-path>] [/[NO]JLOG] [/[NO]PERCENT]
[/REPORT= (<types>)] [/CACHE=(<sizes>)] [/[NO]PAGE] [/[NO]STATISTICS]
<src-cdf-spec>
[/ZMODE=<mode>] [/ [NO]NEG2POSFPO]
<dst-cdf-spec>
[/SINGLE | /MULTI] [/ROW | /COLUMN] [/[NO]DELETE]
[/ENCODING=<encoding> | /HOST | /NETWORK]
[/COMPRESSION= (<types>)] [/SPARSENESS= (<types>)]

UNIX:
% cdfconvert [-skeleton <skt-cdf-path>] [-[no]log] [-[no]lpercent]
[-report "<types>"] [-cache "<sizes>"] [-[no]lpage] [-[no]lstatistics]
<src-cdf-spec>
[-zmode <mode>] [-[no]lneg2posfpl]
<dst-cdf-spec>
[-single | -multi] [-row | -column] [-[noldelete]
[-encoding <encoding> | -host | -network]
[-compression <types>] [-sparseness <types>]
MS-DOS:®
> cdfconvert [-skeleton <skt-cdf-path>] [-[no]log] [-[no]lpercent]
[-report "<types>"] [-cache "<sizes>"] [-[nolpage] [-[nolstatistics]
<src-cdf-spec>
[-zmode <mode>] [-[no]lneg2posfpl]
<dst-cdf-spec>
[-single | -multi] [-row | -column] [-[noldelete]
[-encoding <encoding> | -host | -network]
[-compression <types>] [-sparseness <types>]
Macintosh:

Double-click on the CDFconvert icon.

Windows NT/95/98:
Double-click on the CDFso icon and select the CDFconvert option under the File menu.

Java/UNIX:
Type "java CDFToolsDriver" at the system prompt and select the CDFconvert option.

Macintosh, Java/UNIX & Windows NT/95/98:
When the desired parameters/qualifiers have been selected in the dialog box, click on the Enter button to convert
the CDF. Clicking on the Help button will display online help. Clicking on the Quit button terminates
CDFconvert.

Parameter(s):

<src-cdf-spec> (VMS, UNIX & MS-DOS)
Source edit field (Macintosh, Java/UNIX & Windows NT/95/98)

¥ On MS-DOS systems the executable is named CDFCVT.EXE.

7

The source CDF(s). This can be either a single CDF file name or a directory/wildcard path in which case all
CDFs that match the specification will be converted. Wildcards are allowed in the CDF name but not in the
directory path. In either case do not specify an extension.

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Source edit field, a button labeled Select
is present. When selected, a standard input file dialog is displayed from which a single CDF may be
selected.

<dst-cdf-spec> (VMS, UNIX & MS-DOS)
Destination edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The destination of the converted CDF(s). This may be a single CDF file name only if a single source CDF
was specified. If the directory paths are the same, then a different CDF name must be specified. If the
source CDF specification is a directory/wildcard path, then this must be a directory path (other than the
source directory path). This may also be a directory path if only a single CDF is being converted. In any
case do not specify an extension.

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Destination edit field, a button labeled
Select is present. When selected, a standard output file dialog is displayed in which a single CDF may be
specified.

Qualifier(s):

/SKELETON=<skt-cdf-path> (VMS)
-skeleton <skt-cdf-path> (UNIX & MS-DOS)
Skeleton edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of a skeleton CDF to be used during the conversions. (Do not enter an extension.) The skeleton
CDF is used in the following cases:

1. If a format for the destination CDF was not specified, then the format of the skeleton CDF will be used.

2. If a variable majority for the destination CDF was not specified, then the variable majority of the
skeleton CDF will be used.

3. If a data encoding for the destination CDF was not specified, then the data encoding of the skeleton
CDF will be used.

Specifying a skeleton CDF is optional.

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Skeleton edit field, a
button labeled Select is present. When selected, a standard input file dialog is displayed from which the
skeleton CDF may be selected.

/[INOJLOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not messages about the progress of each conversion are displayed.
/[INOJPAGE (VMS)
-[no]page (UNIX & MS-DOS)

Page output check box (Macintosh & Java/UNIX)
Not applicable (Windows NT/95/98)

78

Specifies whether or not the output is displayed a page at a time. A prompt for the RETURN key will be
issued after each page. A page is generally 22 lines of output.

/[INOJPERCENT (VMS)

-[no]percent (UNIX & MS-DOS)

Display percentages check box (Macintosh & Java/UNIX)
Percentage complete check box (Windows NT/95/98)

Specifies whether or not the percentage of a variable's values converted is displayed during the conversion of
that variable. Message logging must also be enabled.

/INOJDELETE (VMS)
-[no]delete (UNIX & MS-DOS)
Delete existing check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not a destination CDF is deleted if it already exists.

/SINGLE | /MULTI (VMS)
-single | -multi (UNIX & MS-DOS)
Source/Single/Multi radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

The format of the destination CDF(s).

VMS, UNIX & MS-DOS: This overrides the format of the skeleton CDF (if one was specified). If neither
this qualifier nor a skeleton CDF is specified, then the format of a destination CDF will be the same as that of
the source CDF.

Macintosh, Java/UNIX & Windows NT/95/98: Selecting Single or Multi will override the format of the
skeleton CDF (if one was specified). If Source is selected (and a skeleton CDF was not specified), then the
format of a destination CDF will be the same as that of the source CDF. (Selecting Source will not override
the format of a specified skeleton CDF.)

/ROW | /COLUMN (VMS)
-row | -column (UNIX & MS-DOS)
Source/Row/Column radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

The variable majority of the destination CDF(s).

VMS, UNIX & MS-DOS: This overrides the variable majority of the skeleton CDF (if one was specified). If
neither this qualifier nor a skeleton CDF is specified, then the variable majority of a destination CDF will be
the same as that of the source CDF.

Macintosh, Java/UNIX & Windows NT/95/98: Selecting Row or Column will override the variable
majority of the skeleton CDF (if one was specified). If Source is selected (and a skeleton CDF was not
specified), then the variable majority of a destination CDF will be the same as that of the source CDF.
(Selecting Source will not override the variable majority of a specified skeleton CDF.)

/ENCODING=<encoding> | /HOST |/ NETWORK (VMS)

-encoding <encoding> | -host | -network (UNIX & MS-DOS)

Source/Host/Network/Sun...Vax radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)
The data encoding of the destination CDF(s).

VMS, UNIX & MS-DOS: This overrides the data encoding of the skeleton CDF (if one was specified). If
neither this qualifier nor a skeleton CDF is specified, then the data encoding of a destination CDF will be the

79

same as that of the source CDF. The possible values of <encoding> are host, network, sun, vax, decstation,
sgi, ibmpc, ibmrs, mac, hp, next, alphaosfl, alphavmsd, and alphavmsg (and their uppercase equivalents).
Note that the host

and network qualifiers are no longer necessary (but are supported for compatibility with previous CDF
distributions).

Macintosh, Java/UNIX & Windows NT/95/98: Selecting Host, Network, or a specific machine will override
the data encoding of the skeleton CDF (if one was specified). If Source is selected (and a skeleton CDF was
not specified), then the data encoding of a destination CDF will be the same as that of the source CDF.
(Selecting Source will not override the data encoding of a specified skeleton CDF.)

/COMPRESSION=(<types>) (VMS)
-compression <types> (UNIX & MS-DOS)
Compression edit field (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of compression to be used for the CDF and/or variables. The <types> option consists of a
comma-separated list of the following. . .

cdf:i<cT> CDF's compression.

vars:<cT> Compression for all variables.

vars:<cT>:<bF> Compression for all variables with a blocking factor specified.
vars:<cT>:<bF>:<r%> Compression for all variables with a blocking factor and reserve

percentage specified.
var:<name>:<cT> Compression for one particular variable.
var:<name>:<cT>:<bF> Compression for one particular variable with a blocking factor specified.

var:<name>:<cT>:<bF>:<r%> Compression for one particular variable with a blocking factor and reserve
percentage specified.

Where <cT> is one of the following compressions: none, rle.0, huff.0, ahuff.0, or gzip.<level>; <bF> is a
blocking factor; <r%> is a reserve percentage; and <name> is a delimited, case-sensitive variable name with
the following syntax:

<delim><charl><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited variable name
must be enclosed in double quote marks (to preserve case-sensitivity).

For the gzip compression, <level> must be in the range from 1 (fastest compression) to 9 (best compression).

For compressions not specified the compression in the source CDF will be used. Specifying a variable
compression using var:...overrides a compression specified with vars:. . .

/SPARSENESS=(<types>) (VMS) -sparseness <types> (UNIX & MS-DOS)
Sparseness edit field (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of sparseness to be used for the variables. The <types> option consists of a comma-
separated list of the following. . .

vars:<sT> Sparseness for all variables.
var:<name>:<sT> Sparseness for one particular variable.

80

Where <sT> is one of the following: srecords.no, srecords.pad, or srecords.prev; and <name> is a delimited,
case-sensitive variable name with the following syntax:

<delim><char1><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited variable name
must be enclosed in double quote marks (to preserve case-sensitivity).

For sparsenesses not specified the sparseness in the source CDF will be used. Specifying a variable sparseness
using var:. . . overrides a sparseness specified with vars:.. .

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the zMode that should be used with the source CDF(s). The zMode may be one of the following:

0 Indicates that zMode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.
2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of

NOVARY [false] are removed.

Note that using zMode/1 or zMode/2 on a source CDF that contains rVariables will produce a destination CDF
containing only zVariables. The zMode "view" provided for the source CDF is written to the destination CDF
during the conversion.

/[NOJNEG2POSFPO0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and 1).

/CACHE=(<sizes>) (VMS) -cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and c for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

81

/[INOJSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

Specifies whether or not caching statistics are displayed when a CDF is closed.

Example(s):
VMS:
$ CDFCONVERT CDF$SMPL:TEMPLATEQO TEMPLATEOX
$ CDFCONVERT/LOG/REPORT= (ERRORS) CDF$SMPL: USER DISK: [USER.CDF]
$ CDFCONVERT CAC_SST BLENDED CAC_ S ST_BLENDEDX/SINGLE /NETWORK
$ CDFCONVERT/SKELETON=CDF$SMPL: TEMPLATE3 CAC_SST BLENDED* [USER.CDF]
UNIX:
% cdfconvert ../samples/template0 templateOx
% cdfconvert -log -report "errors" ../samples /disk4/user/cdf
% cdfconvert cac sst blended cac sst 1 -single -network
% cdfconvert -skeleton template3 '../cdf/cac_sst*' ~user/cdf
MS-DOS:
> cdfconvert .."samples"\tplateO tplateOx
> cdfconvert -log -report "errors" ..\samples c:\dir4\user\cdf
> cdfconvert cac sst cac_sstl -single -network
> cdfconvert -skeleton tplate3 a:\cdflcac_sst dir5\cdf

VMS, UNIX & MS-DOS:
Command line help is displayed when CDFconvert is executed without any arguments.

3.43 Output from the CDFconvert Program

As CDFconvert executes, the name of each CDF being converted is displayed. If message logging is enabled, the
progress of each conversion is also displayed.

3.5 CDFcompare

3.5.1 Introduction

The CDFcompare program displays the differences between two CDFs. More than one pair of CDFs can be compared.
This program would be used to verify changes made to a CDF (comparing it with the saved original) or to verify the
conversions performed by CDFconvert (see Section 3.4).

3.5.2 Executing the CDFcompare Program

Usage:

82

VMS:

$ CDFCOMPARE [/ [NO]LOG] [/[NO]JATTR] [/[NO]VAR] [/[NO]JNUMBER] [/[NO]ETC]
[/ [NO]NEG2POSFPO] [/ZMODES= (<model>,<mode2>)] [/[NO]LOCATION]
[/REPORT= (<types>)] [/CACHE=(<sizes>)] [/[NO]PAGE]
[/[NO]STATISTICS] [/[NO]PERCENT] [/[NO]VALUE]
[/TOLERANCE= (<F:tolerancel>,<D:tolerancel>)]
<cdf-spec-1> <cdf-spec-2>

-tolerance "<f:tolerancel>,<d:tolerance2>"]

UNIX:
% cdfcompare [-[no]log] [-[nolattr] [-[nolvar] [-[no]number] [-[noletc]
[-[nolneg2posfpl0] [-zmodes "<model>,<mode2>"] [-[no]location]
[-report "<types>"] [-cache "<sizes>"] [-[no]lpage]
[-[no]lstatistics] [-[no]lpercent] [-[no]value]
[-
<cdf-spec-1> <cdf-spec-2>
MS-DOS:’
> cdfcompare [-[no]log] [-[nolattr] [-[nolvar] [-[no]number] [-[nolJetc]
[-[nolneg2posfpl0] [-zmodes "<model>,<mode2>"] [-[no]location]
[-report "<types>"] [-cache "<sizes>"] [-[no]page]
[-[nolstatistics] [-[no]lpercent] [-[no]lvalue]
<cdf-spec-1> <cdf-spec-2>

Macintosh:
Double-click on the CDFcompare icon.
Windows NT/95/98:
Double-click on the CDFso icon and select the CDFcompare option under the File menu.
Macintosh:
Type "java CDFToolsDriver" at the system prompt and select the CDFcompare option.
Macintosh, Java/UNIX & Windows NT/95/98: When the desired parameters/qualifiers have been selected in the

dialog box, click on the Enter button to compare the CDFs. Clicking on the Help button will display online help.
Clicking on the Quit button terminates CDFcompare.

Parameter(s):

<cdf-spec-1> <cdf-spec-2> (VMS, UNIX & MS-DOS)
CDF1 and CDF2 edit fields (Macintosh, Java/UNIX & Windows NT/95/98)

The specifications of the CDFs to be compared. (Do not enter extensions.) These can be either a file name
specifying a single CDF or a directory/wildcard path specifying more than one CDF. Wildcards are
allowed in the CDF name but not in the directory path.

If two directory/wildcard paths are specified, all of the CDFs with matching names will be compared. If a
CDF file name and a directory/wildcard path are specified, the CDF specified will be compared with the

? On MS-DOS systems the executable is named CDFCMP.EXE.

83

CDF in the directory/wildcard path having the same name. If two CDF file names are specified, the CDFs
are compared. (This is the only way to compare two CDFs having different names.)

Macintosh, Java/UNIX & Windows NT/95/98: At the end of each CDF edit field, a button labeled
Select is present. When selected, a standard input file dialog is displayed from which a single CDF may be
selected.

Qualifier(s):

/[INOJLOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not messages about the progress of each comparison are displayed.

/[NOJPERCENT (VMS)

-[no]percent (UNIX & MS-DOS)

Display percentages check box (Macintosh & Java/UNIX)
Percentage complete check box (Windows NT/95/98)

Specifies whether or not the percentage of a variable's values compared is displayed during the comparison of
that variable. Message logging must also be enabled.

/INO]JATTR (VMS)
-[no]attr (UNIX & MS-DOS)
Compare attributes check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not attributes (and their entries) are to be compared.

/[NOJVAR (VMS)
-[no]var (UNIX & MS-DOS)
Compare variables check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not variables are to be compared. Note that an rVariable will never be compared with a
zVariable.

/[NOINUMBER (VMS)
-[no]Jnumber (UNIX & MS-DOS)
Compare numbers check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not numbering differences between attributes with the same names and between variables
with the same names are to be displayed.

/INOJETC (VMS)
-[no]etc (UNIX & MS-DOS)
Compare etc. check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not differences transparent to an application will be displayed. These would consist of the
version/release/increment of the creating CDF library, format, encoding, etc.

/ZMODES=(<mode1>,<mode2>) (VMS)

-zmodes "<mode1>,<mode2>" (UNIX & MS-DOS)
zModel and zMode?2 radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

84

Specifies the zModes that should be used with the CDF(s) being compared. Note that different zModes may
be used for the two CDF(s) specifications. The zModes may be one of the following:

0 Indicates that zMode should be disabled.
1 Indicates that zZMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/INOINEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/[NOJPAGE (VMS)

-[no]page (UNIX & MS-DOS)

Page output check box (Macintosh & Java/UNIX)
Not applicable (Windows NT/95/98)

Specifies whether or not the output is displayed a page at a time. A prompt for the RETURN key will be
issued after each page. A page is generally 22 lines of output.

/INOJLOCATION (VMS)
-[no]location (UNIX & MS-DOS)
Display locations check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the locations of variable value differences are displayed. The locations are displayed
in the form:

<record-number>:[<index 1>,<index2>,...,<indexN>]

/INOJVALUE (VMS)

-[no]value (UNIX & MS-DOS)

Display values check box (Macintosh & Java/UNIX)
Show values check box (Windows NT/95/98)

Specifies whether or not the values are displayed when a difference is detected between variable values or
attribute entries. Note that for variable values to be displayed, the display of the locations of the differences
must also be enabled.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and 1).

Cache sizes edit field (Macintosh & Java/UNIX)
/CACHE=(<sizes>) (VMS)

-cache "<sizes>" (UNIX & MS-DOS)

Cache edit field (Windows NT/95/98)

85

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and c for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/TOLERANCE=(<F:TOLERANCE1,D:TOLERANCE2>) (VMS)
-tolerance "<f:tolerancel,d:tolerance2>" (UNIX & MS-DOS)
Not applicable (Windows N'T/95/98)

Specifies the tolerance(s) that is used to check the equality between two single/double-precision floating-point
values. The default option is no tolerance. It means that two values are considered unequal if their data
representations in common encoding are different. If a tolerance(s) is provided, it is used against the difference
between the two unequal values. If their difference is within the tolerance, they are considered to be
technically equal. Either one or both of these two tolerances, one for 4-byte single-precision floating-point
data and the other for 8-byte double-precision floating-point data, respectively, can be specified.

If the given tolerance is positive, the following formula is used to check their equality:
abs(valuel-value2) > tolerance

If the given tolerance is negative, the following formula is applied:
abs(valuel-value2) > abs(tolerance)*max(abs(valuel),abs(value2))

tolerancel, used for the single-precision floating-point data, may be in one of the two forms: "default" or a
value. Using "default" indicates that the default value, 1.0E-06, is used for the tolerance check for any single-
precision floating-point data. Or, the specified value is used for the tolerance check. This field applies to data
types of CDF_REAL4 and CDF_FLOAT. "def" can be used to substitute for "default".

tolerance2, used for the double-precision floating-point data,may be in one of the two forms: "default" or a
value. Using "default" indicates that the default value, 1.0E-09, is used for the tolerance check for any double-
precision floating-point data. Or, the specified value is used for the tolerance check. This field applies to data
types of CDF_REALS, CDF_DOUBLE and CDF_EPOCH. "default" can be abbreviated as "def".

Note: This option is only applicable to command line tool.

/[INOJSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

Specifies whether or not caching statistics are displayed when a CDF is closed.

Example(s):

VMS:

$ CDFCOMPARE GISS WETL GISS WETL1
$ CDFCOMPARE/LOG/TOLERANCE= (F:DEF,D:1.0E-12) /NOATTR/NUMBER/REPORT= (ERRORS) GISS WETL

CDFSSMPL:GISS WETL

$ CDFCOMPARE/NOVAR/NOETC/ZMODES=(1,2) NCDS$SMPL: NCDS$SDATA:

UNIX:

86

oe

cdfcompare giss wetl giss wetll
cdfcompare -log -tolerance "f:def,d:1.0e-12" -noattr

-number -report "errors" giss wetl ../giss wetlx
cdfcompare -novar -noetc -zmodes "1,2" /user5/CDFs /user6/CDFs

oe

oe

MS-DOS:

> cdfcompare gisswetl c:\gisswetl
> cdfcompare -log -tolerance "f:def,d:1.0e-12" -noattr

-number -report "errors" gisswetl ..\..\giswetlx
> cdfcompare -novar -noetc -zmodes "1,2" a:\cdfs c:\cdf\cdfs

VMS, UNIX & MS-DOS: Command line help is displayed when CDFcompare is executed without any arguments.

3.5.3 Output from the CDFcompare Program

The output from CDFcompare consists of messages indicating the differences found. If message logging is enabled, the
progress of each comparison is also displayed.

3.6 CDFstats

3.6.1 Introduction

The CDFstats program produces a statistical report on a CDF's variable data. Both rVariables and zVariables are
analyzed. For each variable it determines the actual minimum and maximum values (in all of the variable records), the
minimum and maximum values within a valid range of values (with illegal/fill values being ignored), and the variable's
monotonicity.

Monotonicity refers to whether or not a variable's data values increase or decrease from record to record or along a
dimension. This property is checked only if the variable varies along just one "dimension" (considering records to be
another "dimension"). For example, consider a CDF with the 2-dimensional rVariables shown in Table 3.1.

rVariable Record Variance Dimension Variances Check Monotonicity?
EPOCH VARY NOVARY,NOVARY Yes
LATITUDE NOVARY VARY,NOVARY Yes
LONGITUDE NOVARY NOVARY,VARY Yes
ELEVATION NOVARY VARY,VARY No
TEMPERATURE VARY VARY,VARY No

Table 3.1 Example rVariables, CDFstats Monotonicity Checking

The EPOCH, LATITUDE, and LONGITUDE rVariables would be checked for monotonicity but the ELEVATION and
TEMPERATURE rVariables would not be checked.

3.6.2 Special Attribute Usage
CDFstats uses the following special attributes:

FORMAT Used when displaying a variable statistic (e.g., minimum variable value).

87

VALIDMIN

VALIDMAX

FILLVAL

MONOTON

SCALEMIN

SCALEMAX

If range checking is enabled, used as the minimum valid value for a variable. For a variable
with a non-character data type, only the first element of its VALIDMIN attribute entry is
used. Also, if requested, the VALIDMIN attribute entry for a variable will be updated with
the actual minimum value found. Again, if the variable has a non-character data type the
VALIDMIN attribute entry will be updated to have just one element.

If range checking is enabled, used as the maximum valid value for a variable. For a
variable with a non-character data type, only the first element of its VALIDMAX attribute
entry is used. Also, if requested, the VALIDMAX attribute entry for a variable will be
updated with the actual maximum value found. Again, if the variable has a non-character
data type the VALIDMAX attribute entry will be updated to have just one element.

If fill value usage is enabled, used as the value which is ignored while collecting statistics
for a variable.

If requested, the MONOTON attribute entry for a variable will be updated with the actual
monotonicity found. The possible values for the MONOTON attribute entry are described
in Section 3.1.5.

If requested, the SCALEMIN attribute entry for a variable will be updated with the actual
minimum value found.

If requested, the SCALEMAX attribute entry for a variable will be updated with the actual
maximum value found.

The usage of these special attributes can be controlled with command line qualifiers.

3.6.3 Executing the CDFstats Program

Usage:
VMS:

$ CDFSTATS

UNIX:

% cdfstats

MS-DOS:

> cdfstats

[NOJRANGE] [/[NO]JFILL] [/OUTPUT=<file-path>] [/[NO]FORMAT]
[NO]PAGE] [/ [NO]JUPDATE VALIDS] [/ [NO]JUPDATE SCALES]
[NO]UPDATE_MONOTONIC] [/ZMODE=<mode>] [/[NO]NEG2POSFPO]
/REPORT= (<types>)] [/CACHE=(<sizes>)] [/[NO]STATISTICS]
<cdf-path>

nolrange] [-[nolfill] [-output <file-name>] [-[no]format]

no]page] [-[no]Jupdate valids] [-[no]Jupdate scales]

nolJupdate monotonic] [-zmode <mode>] [-[no]lneg2posfpl]
-report "<types>"] [-cache "<sizes>"] [-[no]statistics]
cdf-path>

olrange] [-[no]fill] [-output <file-name>] [-[no]format]

olpage] [-[nolupdate valids] [-[nol]update scales]

noJupdate monotonic] [-zmode <mode>] [-[no]lneg2posfpl]
-report "<types>"] [-cache "<sizes>"] [-[no]statistics]
cdf-path>

88

Macintosh:

Double-click on the CDFstats icon.
Windows NT/95/98:

Double-click on the CDFso icon and select the CDFstats option under the File menu.
Java/UNIX:

Type "java CDFToolsDriver" at the system prompt and select the CDFstats option.

Macintosh, Java/UNIX & Windows NT/95/98: When the desired parameters/qualifiers have been selected in
the dialog box, click on the Enter button to analyze the CDF. Clicking on the Help button will display online help.
Clicking on the Quit button terminates CDFstats.

Parameter(s):

<cdf-path> (VMS, UNIX & MS-DOS)
CDF edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of the CDF to analyze. (Do not specify an extension.)

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the CDF edit field, a
button labeled Select is present. When selected, a standard input file dialog is displayed from which the
CDF may be selected.

Qualifier(s):

/INOJRANGE (VMS)
-[no]range (UNIX & MS-DOS)
Range checking check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not range checking will be performed. To perform range checking, the CDF must contain
VALIDMIN and VALIDMAX attributes. A variable must also have an entry for each of these attributes in
order for range checking to be performed on that variable. Note that for variables having a non-character data
type only the first element of the VALIDMIN and VALIDMAX attribute entries are used.

/[INOJFILL (VMS)
-[no]fill (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not fill values are ignored when collecting statistics. The FILLVAL attribute entry for a
variable (if it exists) is used as the fill value.

/OUTPUT=<file-path> (VMS)

-output <file-path> (UNIX & MS-DOS)
Output edit field (Macintosh & Java/UNIX)
Output edit field (Windows NT/95/98)

If this qualifier is specified, the statistical output is written to the named file. If the named file does not have

an extension, .sts (UNIX & Macintosh) or .STS (VMS & MS-DOS) is appended automatically. If this
qualifier is not specified, the output is displayed on the screen.

&9

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Output edit field, a button labeled Select is
present. When selected, a standard output file dialog is displayed in which the output file may be specified.

/INOJFORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/[NOJPAGE (VMS)

-[no]page (UNIX & MS-DOS)

Page output check box (Macintosh & Java/UNIX)
Not applicable (Windows NT/95/98)

Specifies whether or not the output is displayed a page at a time. A prompt for the RETURN key will be
issued after each page. A page is generally 22 lines of output.

/[INOJUPDATE VALIDS (VMS)
-[noJupdate valids (UNIX & MS-DOS)
Update VALIDMIN/MAX check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the VALIDMIN and VALIDMAX attribute entry values are updated for each
variable based on the actual minimum and maximum values found (with fill values being ignored if
requested). If the VALIDMIN and VALIDMAX attributes do not exist, they are created.

/INOJUPDATE SCALES (VMS)
-[noJupdate scales (UNIX & MS-DOS)
Update SCALEMIN/MAX check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the SCALEMIN and SCALEMAX attribute entry values are updated for each
variable based on the actual minimum and maximum values found (with fill values being ignored if
requested). If the SCALEMIN and SCALEMAX attributes do not exist, they are created.

/INOJUPDATE MONOTONIC (VMS)

-[noJupdate monotonic (UNIX & MS-DOS)

Update MONOTON check box (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies whether or not the MONOTONIC attribute entry values are updated for each variable based on the
monotonicity found (with fill values being ignored if requested). If the MONOTONIC attribute does not exist,
it is created.

/ZMODE=<mode> (VMS)

-zmode <mode> (UNIX & MS-DOS)

zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies the zMode that should be used with the CDF. The zMode may be one of the following:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/[NOJNEG2POSFP0 (VMS)

90

-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. - 0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)

-cache "<sizes>" (UNIX & MS-DOS)

Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and c for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]JSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

Specifies whether or not caching statistics are displayed when a CDF is closed.

Example(s):
VMS:

$ CDFSTATS TESTL1

$ CDFSTATS/REPORT=(ERRORS) GISS_ SOIL

$ CDFSTATS/NOFILL/OUTPUT=TEMPLATE3/NORANGE CDFS$SMPL:TEMPLATE3
UNIX:

% cdfstats giss soil

% cdfstats -range -fill -report "errors" $CDF _SMPL/giss soil

% cdfstats -norange -output template3 ../../samples/template3
MS-DOS:

> cdfstats gisssoil
> cdfstats -range -nofill -report "errors" a:\cdfs\gisssoil
> cdfstats -norange -output tplate3 ..\..\samples\tplate3

VMS, UNIX & MS-DOS: Command line help is displayed when CDFstats is executed without any

91

arguments.

3.6.4 Output from the CDFstats Program
The format of the output from CDFstats is as follows:
For each variable (rVariables and zVariables),

<number>. <name> <n-dims>: [<dim-sizes>] <rec-vary>/<dim-varys> (<data-type>/<n-elems>)

min: | <min-value>
min in range: | <min-value-in-range>
valid min: | <valid-min>, <low-values> low value(s)

max: | <max-value>
max in range: | <max-value-in-range>
valid max: | <valid-max>, <high-values> high value(s)

fill value: | <fill-value>, <fill-values> fill value(s)

monotonic: | <monotonicity>

If range checking and/or fill value filtering is disabled, the corresponding fields will not be displayed. The fields are
defined as follows:

<number>
<name>
<rec-vary>

<dim-varys>

<data-type>
<n-elems>
<n-dims>

<dim-sizes>

<min-value>
<min-value-in-range>
<valid-min>
<low-values>
<max-value>

<max-value-in-range>

The variable number.
The variable name.
The record variance of the variable - eithera T or F.

The dimension variances of the variable - for each dimension either a T or F. This
field is not present if there are zero (0) dimensions.

The data type of the variable (e.g., CDF REAL4).
The number of elements of the variable's data type.
The number of dimensions of a zVariable. This field is not present for an rVariable.

The dimension sizes of a zVariable. This field is not present for an rVariable or if
the zVariable has zero (0) dimensions.

The minimum value found (regardless of any range checking performed).
The minimum value found within the valid range.

The minimum valid value (VALIDMIN attribute entry value).

The number of values found that are less than the valid minimum.

The maximum value found (regardless of any range checking performed).

The maximum value found with the valid range.

92

<valid-max> The maximum valid value (VALIDMAX attribute entry value).

<high-values> The number of values found that are greater than the valid maximum.
<fill-value> The fill value (FILLVAL attribute entry value).

<fill-values> The number of fill values found.

<monotonicity> The monotonicity of the variable.

The <monotonicity> field may take on one of the following values.

3.7

3.7.1

Steady (one value)
Steady (all values the same)

Increase

Decrease

noDecrease (some values the same)

nolncrease (some values the same)

False

n/a

SkeletonTable

Introduction

The variable has only one value in the CDF.
All values of the variable are the same.

Values strictly ~ increase (with increasing record
number/dimension index).

Values strictly decrease (with increasing record
number/dimension index).

Consecutive values either increase or are the same (with
increasing record number/dimension index).

Consecutive values either decrease or are the same (with
increasing record number/dimension index).

Consecutive values both increase and decrease.
The variable was not checked for monotonicity because it varies

along more than one "dimension" (if records are considered
another "dimension").

The SkeletonTable program is used to create an ASCII text file called a skeleton table containing information about a
given CDF. (SkeletonTable can also be instructed to output the skeleton table to the terminal screen.) It reads a CDF
and writes to the skeleton table the following information.

1.

2.

Format (single or multi file), data encoding, variable majority.

Number of dimensions and dimension sizes for the rVariables.

. gAttribute definitions and gEntry values.

. rVariable and zVariable definitions and vAttribute definitions with rEntry/zEntry values.

. Data values for all or a subset of the CDF's variables.

93

The above information is written in a format that can be "understood" by the SkeletonCDF program (see Section 3.8).
SkeletonCDF reads a skeleton table and creates a new CDF (called a skeleton CDF).

3.7.2 Special Attribute Usage

The special attribute FORMAT is used by SkeletonTable (depending on the setting of the "format" qualifier) when
writing variable values in a skeleton table.

3.7.3 Executing the SkeletonTable Program
Usage:
VMS:
$ SKELETONTABLE [/SKELETON=<skeleton-path>] [/[NO]JLOG] [/ZMODE <mode>]
[/NONRV | /NRVTABLE | /VALUES=<values>] [/[NO]SCREEN]

[-[NO]NEG2POSFPO] [/[NO]FORMAT] [/REPORT=(<types>)]
[/CACHE= (<sizes>)] [/[NO]JPAGE] [/[NO]STATISTICS]

<cdf-path>
UNIX:
% skeletontable [-skeleton <skeleton-path>] [-[no]log] [-zmode <mode>]
[-nonrv | -nrvtable | -values <values>] [-[no]screen]
[-[nolneg2posfp0] [-[no]format] [-report "<types>"]
[-cache "<sizes>"] [-[no]lpage] [-[no]statistics]
<cdf-path>
MS-DOS: "’
> skeletontable [-skeleton <skeleton-path>] [-[no]log] [-zmode <mode>]
[-nonrv | -nrvtable | -values <values>]
[-[no]lscreen] [-[nolneg2posfp0] [-[no]format] [-report "<types>"]
[-cache "<sizes>"] [-[no]lpage] [-[no]statistics]
<cdf-path>
Macintosh:

Double-click on the SkeletonTable icon.
Windows NT/95/98:
Double-click on the CDFso icon and select the SkeletonTable option under the File menu.
Java/UNIX:
Type "java CDFToolsDriver" at the system prompt and select the SkeletonTable option.
Macintosh, Java/UNIX & Windows NT/95/98: When the desired parameters/qualifiers have been selected in the

dialog box, click on the Enter button to create the skeleton table. Clicking on the Help button will display online help.
Clicking on the Quit button terminates SkeletonTable.

' On MS-DOS systems the executable is named CDF2SKT.EXE.

94

Parameter(s):

<cdf-path> (VMS, UNIX & MS-DOS)
CDF edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of the CDF from which the skeleton table will be created. (Do not enter an extension.)

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the CDF edit field, a button labeled Select is
present. When selected, a standard input file dialog is displayed from which the CDF may be selected.

Qualifier(s):

/SKELETON=<skeleton-path> (VMS)
-skeleton <skeleton-path> (UNIX & MS-DOS)
Skeleton edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of the skeleton table to be created. (Do not enter an extension because .skt is appended
automatically.) If this qualifier is not specified, the skeleton table will be named <cdf-name>.skt in the
default/current directory (where <cdf-name> is the name portion of the CDF from which the skeleton table
was created).

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Skeleton edit field, a button labeled Select
is present. When selected, a standard output file dialog is displayed in which the skeleton table may be
specified.

/VALUES=<values> |/ NRVTABLE | /NONRV (VMS)
-values <values> | -nrvtable | -nonrv (UNIX & MS-DOS)
No values/.../Selected values radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Only one of these qualifiers may be specified. The meaning of each is as follows:
/VALUES=<values> (VMS)
-values <values> (UNIX & MS-DOS)
No values/.../Selected values radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

VMS, UNIX & MS-DOS: The <values> option specifies which variable values should be put in the
skeleton table. Select one of the options from the list which follows.

Macintosh, Java/UNIX & Windows NT/95/98: Selecting one of the radio buttons described in the
following list specifies which variable values should be put in the skeleton table.

None (VMS)

No values radio button (UNIX & MS-DOS)
Off raio button (Macintosh, Java/UNIX & Windows NT/95/98)

No variable values should be put in the skeleton table.

Nrv (VMS)

NRYV values radio button (UNIX & MS-DOS)

NRYV radio button (Macintosh, Java/UNIX & Windows NT/95/98)
Only NRYV variable values should be put in the skeleton table.

Rv (VMS)

95

RV values radio button (UNIX & MS-DOS)
RV radio button (Macintosh, Java/UNIX & Windows NT/95/98)

Only RV variable values should be put in the skeleton table.

All (VMS)
All values radio button (UNIX & MS-DOS)
All radio button (Macintosh, Java/UNIX & Windows NT/95/98)

All variable values should be put in the skeleton table.

<named> (VMS)
Selected values radio button (UNIX & MS-DOS)
named radio button (Macintosh, Java/UNIX & Windows NT/95/98)

Values of the named variables should be put in the skeleton table.

VMS, UNIX & MS-DOS: <values> is a comma-separated list of delimited variable
names with the entire list enclosed in double quote marks. NOTE: Do not use double
quote marks to delimit a variable name.

Macintosh, Java/UNIX & Windows NT/95/98: The named variables are specified in
the Variables edit field as a comma-separated list of delimited variable names.

/NONRYV (VMS)

-nonrv (UNIX & MS-DOS)

Not supported (Macintosh, Java/UNIX & Windows NT/95/98)
Ignore NRYV data. (No values are placed in the skeleton table.)

/NRVTABLE (VMS)

-nrvtable (UNIX & MS-DOS)

Not supported (Macintosh, Java/UNIX & Windows NT/95/98)
Put NRV variable data values in the skeleton table.

VMS, UNIX & MS-DOS: Note that only the "values" qualifier is actually needed. The others are supported
for compatibility with previous CDF distributions.

/INOJLOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies whether or not messages are displayed as the program executes.
/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)
Specifies the zMode that should be used with the CDF. The zMode may be one of the following:
0 Indicates that zZMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

96

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/INOJFORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the FORMAT attribute is used when writing variable values (if the FORMAT
attribute exists and an entry exists for the variable).

/INOINEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and 1).

/CACHE=(<sizes>) (VMS) -cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[INOJSTATISTICS (VMS)

-[no]statistics (UNIX & MS-DOS)

Display statistics check box (Macintosh & Java/UNIX)
Caching statistics check box (Windows NT/95/98)

Specifies whether or not caching statistics are displayed when a CDF is closed.

/INO]SCREEN (VMS)

-[no]screen (UNIX & MS-DOS)

Output to screen check box (Macintosh & Java/UNIX)
To screen check box (Windows NT/95/98)

Specifies whether or not the skeleton table is to be displayed on the terminal screen (written to the "standard
output"). If not, the skeleton table is written to a text file.

/[INOJPAGE (VMS)

-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh & Java/UNIX)

97

Not applicable (Windows NT/95/98)
Specifies whether or not the output is displayed a page at a time. A prompt for the RETURN key will be
issued after each page. A page is generally 22 lines of output.
Example(s):
VMS:

$ SKELETONTABLE/NOLOG/REPORT= (ERRORS) FGGE3B

$ SKELETONTABLE/SKELETON=FGGE3B/NONRV FGGE3B
$ SKELETONTABLE/SCREEN/VALUES="'Varl', 'Var2'"
UNIX:
% skeletontable -nolog -report "errors" fgge3b
% skeletontable -skeleton fgge3b -nonrv ../cdfs/fgge3b
% skeletontable -screen -values "'Varl',6 'var2'"
MS-DOS:

> skeletontable -nolog -report "errors" fgge3b
> skeletontable -skeleton fgge3b -nonrv c:\temp\fgge3b
> skeletontable -screen -values "'Varl', 'Var2'"

VMS, UNIX & MS-DOS: Command line help is displayed when SkeletonTable is executed without any arguments.

3.74 Output from the SkeletonTable Program

The format of the skeleton table is described in Appendix A.

3.8 SkeletonCDF

3.8.1 Introduction

The SkeletonCDF'' program is used to make a fully structured CDF, called a skeleton CDF, by reading a text file
called a skeleton table. The SkeletonCDF program allows a CDF to be created with the following:

1. The necessary header information - the number of dimensions and dimension sizes for the rVariables, format,
data encoding, and variable majority.

2. The gAttribute definitions and any number of gEntries for each.
3. The rVariable and zVariable definitions.
4. The vAttribute definitions and the entries corresponding to each variable.

5. The data values for any or all of the variables.

! This program was originally named CDFskeleton. It has been renamed to ease the confusion caused some users.
Now, SkeletonCDF is used to create skeleton CDFs and SkeletonTable is used to create skeleton tables.

98

The created CDF is referred to as a skeleton CDF.

3.8.2 Executing the SkeletonCDF Program
Usage:

VMS:

$ SKELETONCDF [/CDF=<cdf-path>] [/[NO]JLOG] [/[NO]DELETE] [/[NO]FILLVAL]
[/REPORT= (<types>)] [/[NO]NEG2POSFP0] [/CACHE=(<sizes>)]

[/ZMODE=<mode>] <skeleton-path>

UNIX:
% skeletoncdf [-cdf <cdf-path>] [-[no]log] [-[noldelete] [-[no]fillval]
[-report "<types>"] [-[no]lneg2posfpl] [-cache "<sizes>"]
[-zmode <mode>] <skeleton-path>
MS-DOS:"
> skeletoncdf [-cdf <cdf-path>] [-[no]log] [-[noldelete] [-[no]fillval]
[-report "<types>"] [-[no]lneg2posfpl] [-cache "<sizes>"]
[-zmode <mode>] <skeleton-path>
Macintosh:

Double-click on the SkeletonCDF icon.
Windows NT/95/98:

Double-click on the CDFso icon and select the SkeletonCDF option under the File menu.
Java/UNIX:

Type "java CDFToolsDriver" at the system prompt and select the SkeletonCDF option.

Macintosh, Java/UNIX & Windows NT/95/98: When the desired parameters/qualifiers have been selected in
the dialog box, click on the Enter button to create a CDF. Clicking on the Help button will display online help.

Clicking on the Quit button terminates SkeletonCDF.

Parameter(s):

<skeleton-path> (VMS, UNIX & MS-DOS)
Skeleton edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of the skeleton table from which a skeleton CDF will be created. (Do not specify an

extension.)

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the Skeleton edit field, a button labeled
Select is present. When selected, a standard input file dialog is displayed from which a skeleton table may be

selected.

12 On MS-DOS systems the executable is named SKT2CDF.EXE.

99

Qualifier(s):

/CDF=<cdf-path> (VMS)
-cdf <cdf-path> (UNIX & MS-DOS)
CDF edit field (Macintosh, Java/UNIX & Windows NT/95/98)

The file name of the CDF that will be created (overriding the file name in the skeleton table). If this qualifier
is not specified, the CDF file name in the skeleton table is used. Do not specify an extension in the file name.

Macintosh, Java/UNIX & Windows NT/95/98: At the end of the CDF edit field, a
button labeled Select is present. When selected, a standard output file dialog is displayed in which a CDF
name may be specified.

/INOJLOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not messages are displayed as the program executes.

/INOINEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/[INO]DELETE (VMS)
-[no]delete (UNIX & MS-DOS)
Delete existing check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not the CDF will be deleted first if it already exists (essentially overwriting it).

/[NOJFILLVAL (VMS)
-[no]fillval (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies whether or not entries of the FILLVAL vAttribute are used to set the pad values for the
corresponding variables. If this qualifier is specified, the FILLVAL vAttribute must exist and only those
variables with an entry for the FILLVAL vAttribute will be affected.

/CACHE=(<sizes>) (VMS) -cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit field (Macintosh & Java/UNIX)
Cache edit field (Windows NT/95/98)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> is the
type of file as follows: d for the dotCDF file, s for the staging scratch file, and c for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can also be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/ZMODE=<mode> (VMS)

100

-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the zMode that should be used with the skeleton table. If zMode is enabled, zVariables will be
created from the definitions in the rVariables section. The zMode may be one of the following:

0 Indicates that zMode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of F [false]
are removed.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh, Java/UNIX & Windows NT/95/98)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is a comma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and 1).

Example(s):

VMS:

$ SKELETONCDF FGGE3B
$ SKELETONCDF/NOLOG/CDF=[-.TEMP]FGGE3B_ X/REPORT= (ERRORS) FGGE3B

UNIX:

oe

skeletoncdf fgge3b
skeletoncdf -nolog -cdf ../fgge3b x -report "errors" fgge3b

oe

MS-DOS:

> skeletoncdf fgge3b
> skeletoncdf -nolog -cdf ..\fgge3b x -report "errors" a:\fgge3b

VMS, UNIX & MS-DOS: Command line help is displayed when SkeletonCDF is executed without any arguments.

3.8.3 Creating the Skeleton Table

A skeleton table is a text file having .skt as a file extension. The normal method of creating and using a skeleton table
would be to use SkeletonTable on an existing CDF that is similar to the CDF you want to create. Then edit the created
skeleton table to meet your needs, and use SkeletonCDF to create the new CDF. The skeleton table could also be
created from scratch with any text editor.

The format of the skeleton table is described in Appendix A.

3.9 CDFinquire

101

3.9.1 Introduction

The CDFinquire program displays the version of the CDF distribution being used, most configurable parameters, and
the default toolkit qualifiers.

3.9.2 Executing the CDFinquire Program
Usage:

VMS:

$ CDFINQUIRE /ID [/[NO]PAGE]

UNIX:

% cdfinquire -id [-[no]lpage]
MS-DOS:"

> cdfinquire -id [-[nolpage]
Macintosh:

Double-click on the CDFinquire icon.

Windows NT/95/98:
Double-click on the CDFso icon and select the CDFinquire option under the File menu.

Java/UNIX:
Type "java CDFToolsDriver" at the system prompt and select the CDFinquire option.
Macintosh, Java/UNIX & Windows NT/95/98: When the desired parameters/qualifiers have been selected in
the dialog box, click on the Enter button to inquire the CDF distribution. Clicking on the Help button will
display online help. Clicking on the Quit button terminates CDFinquire.

Parameter(s):

None

Qualifier(s):
/ID (VMS)

-id (UNIX & MS-DOS)
Id check box (Macintosh, Java/UNIX & Windows NT/95/98)

Causes the version of your CDF distribution and the default toolkit qualifiers to be displayed. This qualifier is
required.

/INOJPAGE (VMS)

" On MS-DOS systems the executable is named CDFINQ.EXE.

102

-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh & Java/UNIX)
Not applicable (Windows NT/95/98)
Specifies whether or not the output is displayed a page at a time. A prompt for the RETURN key will be
issued after each page. A page is generally 22 lines of output.
Example(s):
VMS:

$ CDFINQUIRE/ID/PAGE

UNIX:

[

% cdfinquire -id -page
MS-DOS:
> cdfinquire -id -page

VMS, UNIX & MS-DOS: Command line help is displayed when CDFinquire is executed without any arguments.

3.9.3 Output from the CDFinquire Program

The version of your CDF distribution is displayed first followed by the configurable parameters and then the default
toolkit qualifiers (in the style of the system being used).

3.10 CDFdir

3.10.1 Introduction

The CDFdir utility is used to display a directory listing of a CDF's files."* The dotCDF file is displayed first followed
by the rVariable files and then the zVariable files (if either exist in a multi-file CDF) in numerical order.

3.10.2 Executing the CDFdir Program

The command line syntax for CDFdir is as follows:

Usage:

VMS:

$ CDFDIR <cdf-path>

UNIX:

4 CDFdir is not available on Macintosh or Windows NT/95/98 systems. It is also not available from Java/UNIX.

103

% cdfdir <cdf-path>
MS-DOS:

> cdfdir <cdf-path>

NOTE: This tool is not supported by Macintosh and Windows NT/95/98.

Parameter(s):
<cdf-path> The file name of the CDF for which to display a directory listing (do not specify an
extension).
Example(s):
VMS:
$ CDFDIR NCDSS$DATA:GISS WETL CLIMATOLOGY
$ CDFDIR [-.TEMP]FGGE3B
UNIX:
$ cdfdir ../cac_sst blended
% cdfdir ~/CDFs/giss wetl climatology
MS-DOS:

> cdfdir ..\cac_sst
> cdfdir c:\cdfs\gisswetl

Help is displayed when CDFdir is executed without any arguments.

3.10.3 Output from the CDFdir Program

The format of the output from CDFdir is that of a directory listing on the operating system being used.

3.11 CDFbrowse

CDFbrowse has been replaced by CDFedit (see Section 3.2)."

3.12 CDFlist

CDfFlist has been replaced by CDFexport (see Section 3.3).

' The alias/symbol for CDFbrowse still exists in the "definitions" file on UNIX/VMS systems but now executes
CDFedit in a browse-only mode.

104

3.13 CDFwalk

The functionallity of CDFwalk has been added to CDFexport (see Section 3.3).

105

106

Appendix A

Skeleton Table Format

A.1 Introduction

Skeleton tables are both created by and read by CDF utility programs. SkeletonTable creates a skeleton table by
reading a CDF. SkeletonCDF creates a CDF by reading a skeleton table. In almost all cases the format of the skeleton
tables read and written will be the same. Any differences are minor and will be described where appropriate.

The skeleton table has a free format (except where noted) - you need not be concerned with any column alignments,
spaces between fields, or spaces between successive lines. However, certain syntax rules do apply to skeleton tables.

1. Lines are limited to 132 characters.

2. Keywords for the header section, gAttributes section, vAttributes section, rVariables section, and end section
must always be specified (in that order). The zVariables section is optional - its keyword may be omitted.

3. An exclamation point (!) at any point signifies a comment until the end of the line. Any characters encountered
after the exclamation point will be ignored. An exclamation point may begin a line (making the entire line a
comment). Exclamation points inside delimited character strings are part of the string and do not cause the
start of a comment.

4. Attribute and variable names must be delimited. Any character not in the name may be used as the delimiter
with the following exceptions:

(a) Do not use an exclamation point (!) to delimit an attribute or variable name.
(b) Do not use a period (.) to delimit an attribute name in the variables section.
(c) Do not use a left square bracket ([) or a numeral to delimit a variable name.

5. When specifying a character string attribute entry value, do not use a hyphen (-) to delimit the string or strings
(if the string is split across one or more lines).

6. All items are referenced from one (1). These include gAttribute gEntry numbers and NRV variable index
values.

In the descriptions that follow, optional fields are shown in brackets (]...]).

A.2 Header Section

107

The header section contains general information about the CDF. The format of the header section is as follows:

#header

CDF NAME: <cdf-name>

DATA ENCODING: <data-encoding>

! Variables

MAJORITY: <variable-majority>

FORMAT: <cdf-format>

G.Attributes V.Attributes Records Dims Size

<rVars>/<zVars> <gAttrs> <vAttrs> <n-recs>/z <n-dims> <dim-sizes>

The fields are defined as follows:

<cdf-name>

<data-encoding>

<variable-majority>

<cdf-format>

<rVars>

<zVars>

<gAttrs>

The name of the CDF. When SkeletonTable creates a skeleton table, this will be the name of
the corresponding CDF (not the full file name specified). When SkeletonCDF reads a
skeleton table, this will be the name of the CDF created unless a CDF file name is specified
on the command line. If the CDF name in the skeleton table is to be used, a full file name
must be specified (if desired) or else the CDF will be created in the default/current directory.

The data encoding of the CDF. When specifying a data encoding to the SkeletonCDF
program, the following encodings are valid: HOST, NETWORK, VAX, ALPHAVMSd,
ALPHAVMSg, ALPHAVMSi, SUN, SGi, DECSTATION, ALPHAOSF1, IBMRS, HP, PC,
MAC, and NeXT. When a skeleton table is created by SkeletonTable, all of the above
encodings with the exception of HOST are possible. Data encoding is described in Section
2.2.8.

The variable majority of the CDF. This may be either ROW or COLUMN. Variable
majority is described in Section 2.3.15.

The format of the CDF. This may be either SINGLE or MULTI. CDF formats are described
in Section 2.2.7. Note that this line is optional. Skeleton tables created by SkeletonTable in
CDF V2.0 did not have this line because the single-file option did not exist. To allow
SkeletonCDF to read skeleton tables created with SkeletonTable in CDF V2.0, this line was
made optional. If omitted, SkeletonCDF will create a CDF with the default format for your
CDF distribution. Consult your system manager to determine this default. SkeletonTable (in
CDF V2.1 and beyond) always generates this line regardless of the version of the CDF being
read.

The number of rVariables in the CDF. SkeletonTable always places the correct number here.
However, when SkeletonCDF reads a skeleton table, this value is ignored (but a place holder
is necessary). The number of rVariables created is determined by the number of rVariable
definitions in the rVariable definitions section.

The number of zVariables in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton table, this value is ignored (but a place
holder is necessary). The number of zVariables created is determined by the number of
zVariable definitions in the zVariable definitions section.

The number of gAttributes in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton ta- ble, this value is ignored (but a
place holder is necessary). The number of gAttributes created is determined by the number
of definitions in the gAttributes section.

108

<vAttrs> The number of vAttributes in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton table, this value is ignored (but a place
holder is necessary). The number of vAttributes created is determined by the number of

definitions in the vAttributes section.

<n-recs> The (maximum) number of rVariable records in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton table, this value is
ignored (but a place holder is necessary). The number of records written to the CDF depends
on whether or not any values are specified for variables. NRV variables are described in

Section 2.3.10.

<n-dims> The number of dimensions for the rVariables in the CDF.

<dim-sizes> The dimension sizes for the rVariables in the CDF - one value per dimension.

rVariables have zero (0) dimensions, this field would be left blank.

An example header section for a CDF with 2-dimensional rVariables follows:
#header

CDF NAME: sample2
DATA ENCODING: NETWORK
MAIJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Size
[
14/0 18 4 1/z 2 180 360
If the rVariables had zero dimensions, the header section would be as follows:
#theader
CDF NAME: sample0
DATA ENCODING: NETWORK
MAIJORITY: ROW
FORMAT: SINGLE
! Variables G.Attributes V. Attributes Records Dims Size
| e e e e e e
14/0 18 4 1/z 0

A.3 gAttributes Section

The gAttributes section contains the definition of each gAttribute as well as any gEntries for those gAttributes. The

format of the gAttributes section is as follows:
#GLOBALattributes

[<global-scope-attribute-definition>

109

<global-scope-attribute-definition>
<global-scope-attribute-definition>

<global-scope-attribute-definition>]

Where <global-scope-attribute-definition>, needless to say, is a gAttribute definition.

Zero or more gAttribute definitions are allowed. (There is no limit on the number of attributes that a CDF may have.)
The format of each gAttribute definition is as follows:

Attribute
Name

<attr-name>

Entry Data

Number Type Value

[<entry-n>: <data-type> <value>

<entry-n>: [<data-type>] <value>

<entry-n>: [<data-type>] <value>

<entry-n>: [<data-type>] <value>]. ! Note the “.”

The fields are defined as follows:

<attr-name>

<entry-n>

<data-type>

<value>

The name of the gAttribute. The name must be delimited with a character not appearing in
the name itself (e.g., "TITLE" or 'History'). The delimiting characters are not part of the
gAttribute name in the CDF.

The gEntry number. Zero or more gEntries may be specified for a gAttribute, and there are
no restrictions on the gEntry numbers that may be used (except that they must be greater
than zero).

The data type for the gEntry. The data type must be one of the following: CDF _BYTE,
CDF _INT1, CDF UINTI1, CDF INT2, CDF UINT2, CDF INT4, CDF UINT4,
CDF_REALA4, CDF FLOAT, CDF REALS, CDF DOUBLE, CDF_EPOCH, CDF CHAR,
or CDF_UCHAR. The <data-type> field is optional for all but the first gEntry specified. If
omitted, the data type of the previous gEntry is assumed.

The value(s) for the gEntry. A period (.) follows the value(s) of the last gEntry for a
gAttribute.

Attribute Entry Values

An attribute entry can have more than one element of the specified data type. For character
data types (CDF_CHAR and CDF_UCHAR), each character is the element of a string. The
character string must be delimited with a character not appearing in the string itself, and the
entire delimited string must be enclosed in braces (e.g., { "The CDF title." }). If the string
will not fit on one line, it may be continued on additional lines. The substrings are each
delimited with a unique character, and a dash (-) is placed at the end (after the terminating
delimiter) of each line except the last one. For example,

{ "This is a longer " —
"CDF title that will" -

110

" not fit on one line." }

For non-character data types, the elements are enclosed in braces and separated by commas
(e.g., { 1,2,31}). If the elements will not all fit on one line, they may be continued on

additional lines. For example,

{1.0,2.0, 3.0, 4.0, 5.0,
6.0,7.0, 8.0, 9.0, 10.0 }

Note that an individual element value may not be split across lines.

The format of a value for the CDF_EPOCH data type (which is also considered a non-
character data type) is defined in Section 2.5.4. A CDF_EPOCH value may not be split

across two lines.

Several example gAttribute definitions follow:

#GLOBALattributes
Attribute Entry Data
Name Number Type
"TITLEa" 1: CDF_CHAR
"TITLEDb" 1: CDF CHAR
"History" 1: CDF CHAR
2:
"TIMES" 1: CDF_EPOCH.
2:
&Factors& L: CDF REAILA4
2:
3:
4:
5:

A.4 vAttributes Section

The vAttributes section contains the names of the vAttributes in the CDF. Any rEntries or zEntries for these vAttributes
are defined in the rVariables/zVariables sections (following the definition of the corresponding variable). The format

of the vAttributes section is as follows:
#VARIABLEattributes

[<attribute-name>
<attribute-name>

111

{ "CDAW-9A; SABRE" }.

{ "CDAW-9A; SABRE " -
"Backscatter Radar, 20s." }.

{ "CDF created 02-Jan-1961" }
{ "CDF modified 23-Oct-1964" }.

{ 04-Jul-1976 12:00:00.000,
31-Oct-1976 00:00:00.000 }

{ 25-Dec-1976 01:10:00.000,
01-Jan-1977 01:10:30.000 }.

<attribute-name>

<attribute-name>]
Where <attribute-name> is a vAttribute name delimited with a character not appearing in the name itself (e.g.,
"VALIDMIN" or 'Units'). The delimiting characters are not part of the vAttribute name in the CDF. There may be zero
or more vAttribute names. (There is no limit on the number of attributes that a CDF may have.)
An example vAttributes section follows:
#VARIABLEattributes

"FIELDNAM"

"VALIDMIN"
"Units"

A.5 rVariables Section

The rVariables section contains the definition of each rVariable in the CDF, the values for any vAttribute rEntries
associated with each rVariable, and (optionally) data values for those rVariables. The format of the rVariables section is
as follows:

#variables

[<variable-definition>

<variable-definition>
<variable-definition>

<variable-definition>]

Where <variable-definition> is an rVariable definition. The format of each rVariable definition is as follows:

! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| ommmcceemmeee et e e
<var-name> <var-data-type> <n-elems> <rec-vary> <dim-varys>
! Attribute Data
! Name Type Value
Docemmceceeeeemeen
[<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>

112

<attr-name>

<entry-data-type> <entry-value>]. ! Note the "."

[[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices>
[<rec-num>:]<indices>

= <value>
= <value>

[<rec-num>:]<indices> = <value>]

Each field is defined as follows:

<var-name>

<var-data-type>

<n-elems>

<rec-vary>

<dim-varys>

<attr-name>

<entry-value>

<rec-num>

<indices>

The name of the rVariable. The name must be delimited with a character not appearing in
the name itself (e.g., "EPOCH" or 'Temperature'). The delimiting characters are not part of
the rVariable name in the CDF.

The data type for the rVariable. The data type must be one of the following: CDF_BYTE,
CDF _INT1, CDF UINTI1, CDF INT2, CDF UINT2, CDF INT4, CDF UINT4,
CDF_REALA4, CDF FLOAT, CDF_REALS, CDF DOUBLE, CDF_EPOCH, CDF_CHAR,
or CDF_UCHAR.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string. For non-character data
types, this value must be one (1).

The record variance of the rVariable. This must be either T (the values vary from record to
record) or F (the values do not vary from record to record).

The dimension variances of the rVariable. For each dimension there must be either a T (the
values vary along that dimension) or F (the values do not vary along that dimension). Each
dimension variance must be separated by at least one space. If the rVariables have zero
dimensions, this field would be left blank.

The name of the vAttribute for which to specify an rEntry for this rVariable. The vAttribute
must have been specified in the vAttributes section. The name must be delimited with a
character not appearing in the name itself (e.g., "SCALEMAX" or 'range'). The delimiting
characters are not part of the vAttribute name in the CDF.<entry-data-type> The data
type for the vAttribute rEntry. The data type must be one of the following: CDF BYTE,
CDF INT1, CDF UINTI1, CDF INT2, CDF UINT2, CDF INT4, CDF UINT4,
CDF REALA4, CDF FLOAT, CDF REALS, CDF DOUBLE, CDF EPOCH, CDF CHAR,
or CDF_UCHAR.

The value(s) for the vAttribute rEntry. The format of attribute entry values is described in
Section A.3.

NOTE: The last rEntry MUST be followed by a period (.). If no rEntries
are specified for an rVariable, the period must still be present.

The record number of an rVariable value. This will be present only for record-variant (RV)
rVariables.

The indices of an rVariable value. The indices are enclosed in brackets and separated by

commas (e.g., [23,1] or [1,80]). If the rVariables have zero dimensions, [] would be
specified (the brackets are still required).

113

<value> The value at the given record/indices. For character data types (CDF CHAR or
CDF_UCHAR) the string must be delimited with a unique character and enclosed in braces
({...}) in the same manner as for an attribute entry for a character data type. For non-
character data types the value is not enclosed in braces (the braces are not necessary because
there can only be one element). The format for CDF_EPOCH values is described in Section

2.54.

The vAttribute rEntries are optional. If omitted, the terminating period is still required. The rVariable values are also
optional.

Several sample rVariable definitions for a CDF with 2-dimensional rVariables follow:

! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
Dcmcceee e
! “Latitude” CDF REAL4 1 F FT
! Attribute Data
! Name Type Value
Dommmeeee e
“VALIDMIN” CDF_REAL4 { -90.0 }
“VALIDMAX” CDF REAL4 { 90.0 }
“scale” CDF REALA4 { -60.0, 60.0 }.
[1,1] = -60.0
[1,2] = -30.0
[1,3] = 0.0
[1,4] = 30.0
[1,5] = 60.0
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
Dcmmeeeee e
! “EPOCH” CDF_EPOCH 1 F F F
! Attribute Data
! Name Type Value
mmmmmeme e e
“scale” CDF REALA4 { 10-Oct-1991 00:00:00.000,
20-Oct-1991 23:59:59.999 }.
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
Dcmcceee e
! “Tmp’ CDF_INT2 1 T TT
! Attribute Data

114

‘Fieldname’ CDF _CHAR { "Temperature (C)" }.
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
|cmmcmceeee e
! “pres_lv1” CDF_REALA4 1 T F F
! Attribute Data
! Name Type Value

! no attribute entries

1:[1,1] = 1013.1
2:[1,1] = 1015.0
3:[1,1] = 1012.3

A sample variable definition for a CDF with 0-dimensional rVariables follows:

! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
Dcmmeeeee e
! “Latitude” CDF REAL4 1 F
! Attribute Data
! Name Type Value
Dommmemeee e e
“VALIDMIN” CDF_REAL4 { -90.0 }
“VALIDMAX” CDF REAL4 { 90.0 }.
[1=-123

A.6 zVariables Section

The optional zVariables section contains the definition of each zVariable in the CDF, the values for any vAttribute
zEntries associated with each zVariable, and (optionally) data values for those zVariables. The format of the
zVariables section is as follows:

#zVariables
[<variable-definition>

<variable-definition>
<variable-definition>

115

<variable-definition>]

Where <variable-definition> is a zVariable definition. The format of each zVariable definition is as follows:

! Variable
! Name

<var-name>
! Attribute

! Name

[<attr-name>
<attr-name>
<attr-name>

<attr-name>

Data
Type

<var-data-type>

Data
Type

<entry-data-type>
<entry-data-type>
<entry-data-type>

<entry-data-type>

<entry-value>
<entry-value>
<entry-value>

<entry-value>].

Number Record Dimension

Elements Dims Variance Variances

<n-elems> <dims> <sizes> <rec-vary> <dim-varys>
Value

! Note the "."

[[<rec-num>:]<indices> = <value>
[<rec-num>:]<indices> = <value>
[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>]

Each field is defined as follows:

<var-name>

<var-data-type>

<n-elems>

<dims>

<sizes>

<rec-vary>

The name of the zVariable. The name must be delimited with a character not appearing in
the name itself (e.g., "EPOCH" or 'Temperature'). The delimiting characters are not part of
the zVariable name in the CDF.

The data type for the zVariable. The data type must be one of the following: CDF BYTE,
CDF INT1, CDF UINTI1, CDF INT2, CDF UINT2, CDF INT4, CDF UINT4,
CDF REAL4, CDF FLOAT, CDF REALS, CDF DOUBLE, CDF_EPOCH,
CDF _CHAR, or CDF_UCHAR.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in each string. For non-character data types
this value must be one (1).

The number of dimensions for the zVariable.

The dimension sizes - one value per dimension. If the zVariable has zero (0) dimensions,
this field would be left blank.

The record variance of the zVariable. This must be either T (the values vary from record to
record) or F (the values do not vary from record to record).

116

<dim-varys>

<attr-name>

<entry-data-type>

<entry-value>

<rec-num>

<indices>

<value>

The dimension variances of the zVariable. For each dimension there must be either a T (the
values vary along that dimension) or F (the values do not vary along that dimension). Each
dimension variance must be separated by at least one space. If the zVariable has zero
dimensions, this field would be left blank.

The name of the vAttribute for which to specify a zEntry for this zVariable. The vAttribute
must have been specified in the vAttributes section. The name must be delimited with a
character not appearing in the name itself (e.g., "SCALEMAX" or 'range'). The delimiting
characters are not part of the vAttribute name in the CDF.

The data type for the vAttribute zEntry. The data type must be one of the following:
CDF BYTE, CDF_INT1, CDF _UINT1, CDF _INT2, CDF UINT2, CDF _INT4,
CDF_UINT4, CDF _REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE,
CDF_EPOCH, CDF_CHAR, or CDF_UCHAR.

The value(s) for the vAttribute zEntry. The format of attribute entry values is described in
Section A.3.

NOTE: The last zEntry MUST be followed by a period (.). If no zEntries are specified for
a zVariable, the period must still be present.

The record number of an zVariable value. This will be present only for record-variant (RV)
zVariables.

The indices of an zVariable value. The indices are enclosed in brackets and separated by
commas (e.g., [23,1] or [1,80]). If the zVariable has zero dimensions, [] would be specified
(the brackets are still required).

The value at the given record/indices. For character data types (CDF_CHAR or
CDF_UCHAR) the string must be delimited with a unique character and enclosed in braces
({...}) in the same manner as for an attribute entry for a character data type. For non-
character data types the value is not enclosed in braces (the braces are not necessary because
there can only be one element). The format for CDF_EPOCH values is described in Section
2.54.

The vAttribute zEntries are optional. If omitted, the terminating period is still required. The zVariables values are also

optional.

Several sample zVariable definitions follow:

Variable
! Name

“Instrument”

! Attribute

! Name
“FIELDNAM”

[1 = { "Gonkulator" }

Variable
! Name

Data Number Record Dimension
Type Elements Dims Sizes Variance Variances
CDF_CHAR 10 0 F

Data

Type Value

CDF _CHAR { "Measuring instrument" }.

Data Number Record Dimension
Type Elements Dims Sizes Variance Variances

117

“Ticks”

! Attribute
! Name

CDF_BYTE

Data
Type

! no attribute entries

NN DN = =
W N — W N —
[itr i S Tl IR
Il

— N W W N —

Variable
! Name

“WIND VELOCITY”

! Attribute
! Name

“FIELDNAM”
“VALIDMIN”
“VALIDMAX”
“UNITS”
“FORMAT”

CDF_REAL4

Data
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_CHAR
CDF_CHAR

A.7 End Section

1 1 3 T T
Value
Number Record Dimension
Elements Dims Sizes Variance Variances
1 3 360 180 10 T TTT

{ "Wind velocity." }
{ 0.0 }

{ 300.0 }

{ "Knots" }

{ "Fo.1" }.

This section simply consists of the keyword #end. This section is required.

A.8 Example Skeleton Table

An example skeleton table containing rVariables and zVariables follows:

Skel eton table for the "exanpl e2" CDF

1
I Generated: Thursday,
!
!

17- Nov-1994 14:07:58

CDF created/ nodified by CDF V2.4.10
Skel eton table created by CDF V2.5.0

#header

CDF NAME:

DATA ENCODI NG

MAJCORI TY:
FORMAT:

exanpl e2
NETVORK
ROW

SI NGLE

118

I Variables G Attributes V. Attri butes Records

#G_ OBALattri butes

I Attribute
I Nane

"TI TLE"

#VARI ABLEat tri but es

" FI ELDNAM'
"VALI DM N'
" VALI DIVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORMAT"

#vari abl es

I Variabl e

" EPOCH"

I Attribute
I Nane

" FI ELDNAM'
"VALI DM N'
"VALI DIVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORMAT"

I Variabl e

"LONG TUD'

I Attribute
I Nane

" FI ELDNAM'
"VALI DM N'
" VALI DIVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORMAT"

Dat a
Type

CDF_EPOCH

Dat a
Type

CDF_CHAR
CDF_EPOCH
CDF_EPOCH
CDF_EPOCH
CDF_EPOCH
CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR
CDF_CHAR

Dins Sizes

7 1 2 11 7
Dat a
Type Val ue
CDF_CHAR { "Title for exanple2 CDF." }

Nunber Record Di nensi on

El enent s Vari ance Var i ances

1 T FF

Val ue
{ "Time since 0 A D. "}
{ 01-Jan-0000 00: 00: 00. 000 }
{ 01-Jan-2089 00: 00: 00. 000 }
{ 01-Apr-1986 07:00: 00. 000 }
{ 01- Apr-1986 23:00: 00.000 }
{ "mlliseconds (UT) "}
{ "E14.0 "}

Nunber Record Di nensi on
El enent s Vari ance Var i ances
1 F TF

Val ue

{ "Longitude variable " }
{ 0.0}

{ 180.0 }

{ -50.0 }

{ 50.0}

{ "Degrees "}
{ "F8.3 "}

119

RPRRRRRRRR

WNEFR,O!

1]
1]

UAOOO RPNWAW

HI—‘(Q@\I_O')U‘I#CDI\JI—‘
So:

H_O"

I Vari abl e

" LATI TUDE"

I Attribute
I Nanme

" FI ELDNAM'
"VALI DM N'
"VALI DIVAX"
" SCALEM N'
" SCALEMVAX"
"UNI TS"

" FORVAT"

1,1]

N R ON

WNPEP,O!

[
[
[
[
[
[
[

RPRRRRR

I Variable

" TEMPERATURE

I Attribute
I Nane

" FI ELDNAM'
“VALI DM N'
" VALI DIVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORMAT"

#zVari abl es
I Variable

I Nane

" BI AS"

Soo_ LNy

000500
[eleololole]

OO0
oo

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR

CDF_CHAR

©00o
[oleole)

Dat a
Type

" CDF_| NT4

Dat a
Type

CDF_CHAR
CDF_I NT4
CDF_I NT4
CDF_I NT4
CDF_I NT4
CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_| NT4

Nurber Record Di nensi on
El ement s Vari ance Vari ances
1 F FT

Val ue
{ "Latitude variable "}
{ 0.0}
{ 90.0 }
{ -30.0}
{ 30.0}
{ "Degrees "}
{ "F8.3 "y
Nurber Record Di mensi on
El enent s Vari ance Var i ances
1 T TT
Val ue
{ "Tenperature "}
{ 0}
{ 50}
{ 0}
{ 10}
{ "Deg C "}
{III2 II}
Nurber Record Di mensi on
Elemrents Dins Sizes Variance Variances
1 0 T

120

Attribute

" FI ELDNAM'
"VALI DM N'
"VALI DIVAX"
"UNITS "
"FORVAT "

34
28
17

WN -

[
3l
3

[T T—

I Variabl e
I Nane

"Coefficients"

LN
noon

Attribute
Name

" FI ELDNAM'
"FORVAT "

I Variabl e
I Nane

" TMP- npdel "

#end

Attribute
Name

" FI ELDNAM'
"VALI DM N'
" VALI DIVAX"
" SCALEM N'
" SCALEMAX"
"UNNTS "
"FORMAT "

-0. 0254
14. 2338
-9.9444

Dat a
Type

CDF_CHAR
CDF_I NT4
CDF_I NT4
CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR
CDF_CHAR

Nunber

El enent s

{
{

Dims Sizes

"Tenper at ure nodel
"F9.1 "l

Nunber

El enent s

Dims Sizes

1 2 360 180

"Tenper at ure nodel .
-20.0 }

50.0 }

0.0}

30.0 }

"deg C

"F9.6 "}

121

"}
Record Di nensi on
Vari ance Vari ances
F T

coefficients." }

Record Di nensi on
Vari ance Vari ances
T TT

"}
"}

122

Appendix B

IDL Support

B.1 Introduction

The CDF distribution includes a set of IDL functions/procedures that allow access to the CDF library (hereafter
referred to as the CDF/IDL interface). The functions/procedures are used in the same manner as the Standard and
Internal Interfaces are used in programs written in C.'"® CDFs can be both read and written/modified.

Research Systems, Inc. (the developers of IDL) have also implemented an interface to CDF that is part of the IDL
product. It differs from the interface provided with the CDF distribution in that it is intended more for the non-
programmer (and is functionally similar to other interfaces they provide). Because IDL's CDF interface relies on a
version of the CDF library being linked into the IDL executable, IDL's interface may lag behind the most recent CDF
distribution. This can cause problems as new features are added to the CDF library (which IDL's interface will not
know about).

CDF's interface relies on IDL's support of dynamic linking. IDL in turn relies on the operating system being used to
support dynamic linking in a reasonable way. Currently, only the VAX (OpenVMS), DEC Alpha (OpenVMS &
OSF/1), Sun (SunOS & SOLARIS), HP (HP-UX), SGi (IRIX 5.x & 6.x), and IBM RS6000 (AIX) support dynamic
linking in a way that makes it possible to use CDF's interface in IDL. Because IDL's CDF interface is built into the IDL
executable, it does not rely on dynamic linking and is therefore available on every machine on which IDL is supported
(assuming CDF is also supported on that machine).

B.2 Using CDF's IDL Interface

This section assumes that you are using the "definitions" file provided with the CDF distribution (and that it has been
properly configured and named by your system manager). The "definitions" file is a command file named
DEFINITIONS.COM on VMS systems and a script file named definitions.<shell-type> on UNIX systems where
<shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH, and POSIX
shells, and B for the Bourne shell (sh). The "definitions" file defines the logical name IDL STARTUP on VMS
systems and the environment variable IDL STARTUP on UNIX systems to the full directory path of an IDL startup file
provided with the CDF distribution. When IDL is started, this startup file is automatically executed (because IDL
STARTUP is defined). The startup file performs the following functions. . .

1. Makes known to IDL the functions/procedures that are used to call the CDF library (and perform other utility
operations).

' 1In previous CDF releases, when using the Internal Interface it was required that the current CDF be selected in each
call to CDFlib. This is no longer necessary. The current CDF is now maintained from one call to the next of CDFlib (as
is the current status code).

123

2. Sets IDL's internal paths. These are used when searching for a batch file to be executed or when locating online
help files.

3. Executes one or more batch files that creates a number of local variables necessary for calling CDF
functions/procedures and then interpreting the results. Check with your system administrator to see which
batch files are being executed.

A list of messages should be displayed indicating the CDF functions/procedures that have been compiled.

If you are already using your own startup file (pointed to by your definition of IDL STARTUP), you should remove the
definition of IDL STARTUP from the CDF "definitions" file being used and do one of the following. . .

1. Add the contents of the CDF/IDL startup file to your own startup file.
2. Have your startup file execute the CDF/IDL startup file.

The definition of IDL STARTUP in the CDF "definitions" file being used points to the location of the CDF/IDL startup
file.

B.3 CDF "Include" Files

A number of parameters (macro constants) are necessary when calling functions in the CDF library from a

C program. These parameters are defined in the cdf.h header file. In a Fortran application the cdf.inc

include file defines these parameters. There are three available methods for making these parameters known when
calling CDF functions/procedures in IDL: constant structures, mapping functions, and individual local variables.

B.3.1 Constant Structures

A batch file,"” cdfOx.pro, is available that creates a set of IDL structure variables that contain the CDF parameter
values. Each structure variable contains one or more tags (fields) which are initialized to the proper value. The
following structure variables are created by cdfOx.pro.'®

Structure Variable Contents
CDFx General CDF constants
CDFdt Data type constants
CDFen Encoding constants
CDFde Decoding constants
CDFic Informational status code constants
CDFwc Warning status code constants
CDFec Error status code constants
CDFiif Internal Interface function constants
CDFiix General Internal Interface item constants
CDFiia Internal Interface attribute item constants
CDFiie Internal Interface entry item constants
CDFiir Internal Interface rVariable item constants
CDFiiz Internal Interface zVariable item constants

"7 Batch files are also known as include files.
'8 The batch file cdf0.pro is also available that serves the same purpose. The only difference is that its structure
variable names are longer.

124

To display the contents of a particular structure variable, use the IDL help command with the /structures keyword. For
example. . .

IDL> @cdfOx
IDL> help, /structures, cdfx
** Structure <40023808>, 52 tags, length=208, refs=1:

CDF_MIN DIMS LONG 0
CDF_MAX DIMS LONG 10
IDL>

The following example will show how the structure variables created by cdfOx.pro would be used.

IDL> @cdfOx

IDL> dimSizes = lonarr(CDFx.CDF_MAX DIMS)

IDL> status = CDFcreate (‘testl', OL, dimSizes, CDFen. NETWORK_ ENCODING, $
IDL> CDFx.ROW_MAIJOR, id)

IDL> if (status It CDFic.CDF OK) ...

IDL> status = CDFattrCreate (id, 'TITLE', CDFx.GLOBAL SCOPE, attrNum)
IDL> if (status It CDFic.CDF_OK) ...

IDL> status = CDFattrPut (id, attrNum, OL, CDFdt.CDF _CHAR, 6L, 'Test 1')
IDL> if (status It CDFic.CDF _OK) ...

IDL> status = CDFclose (id)

IDL> if (status It CDFic.CDF_OK) ...

B.3.2 Mapping Functions

Three mapping functions are available that take as an argument a string containing the name of a parameter and return
the numerical value for that parameter as an IDL longword. These mapping function are made known to IDL in the
CDF/IDL startup file.

Mapping Function Purpose

MCP Map general CDF parameters
MSC Map status code constants

MIIL Map Internal Interface constants

For example, the status code value for NO_SUCH_CDF would be retrieved as follows. . .

IDL> status = CDFopen (‘testl', id)
IDL> if (status eq MSC('NO_SUCH_CDF")) print, "CDF not found..."

The use of these mapping functions will add execution overhead because of the number of string comparisons that must
be performed by the functions to locate the proper parameter value.

B.3.3 Individual Local Variables

Three batch files are available that define a local variable for each CDF parameter that might be needed. Unfortunately,
IDL limits the number of local variables that may be defined in any one function/procedure. This limit will almost

certainly be reached if you have to include one or more of these batch files. For this reason one of the two previously
described methods should be used to define the necessary CDF parameters.

125

NOTE: These batch files are maintained in the CDF distribution only in the event that IDL might raise the limit on
local variables.

B.4 On-Line Help

IDL provides an on-line help facility to which help for user written procedures/functions can be added.” A specially
formatted file is provided with the CDF distribution that contains on-line help for the procedures/functions in the
CDF/IDL interface. This file is named cdf26cdfif.help and is located in the "help" directory of the CDF distribution. If
you are using the appropriate "definitions" file, IDL will be able to locate this file when online help is requested.
Choose the topic called CDF26CDFIF rather than CDF. (CDF provides online help for IDL's CDF interface - not the
interface provided with the CDF distribution.)

B.5 Available Functions

The CDF functions/procedures available at the IDL command line exactly mirror the Standard and Internal Interface
functions available for a program written in C.** The CDF C Reference Manual describes the functionality of each in
detail. The syntax required when calling each function is as follows. . .

IDL> status = CDFlib (fncl, ...)

IDL> status = CDFcreate (CDFpath, numDims, dimSizes, encoding, majority, id)

IDL> status = CDFopen (CDFpath, id)

IDL> status = CDFdoc (id, version, release, copyright)

IDL> status = CDFinquire (id, numDims, dimSizes, encoding, majority, $

IDL> maxRec, numVars, numAttrs)

IDL> status = CDFclose (id)

IDL> status = CDFdelete (id)

IDL> status = CDFerror (status, text)

IDL> status = CDFattrCreate (id, attrName, attrScope, attrNum)

IDL> status = CDFattrRename (id, attrNum, attrName)

IDL> status = CDFattrIlnquire (id, attrNum, attrName, attrScope, maxEntry)

IDL> status = CDFattrEntrylnquire (id, attrNum, entryNum, dataType, numElems)

IDL> status = CDFattrPut (id, attrNum, entryNum, dataType, numElems, value)

IDL> status = CDFattrGet (id, attrNum, entryNum, value)

IDL> status = CDFvarCreate (id, varName, dataType, numElems, recVary, dimVarys, varNum)

IDL> status = CDFvarRename (id, varNum, varName)

IDL> status = CDFvarlnquire (id, varNum, varName, dataType, numElems, recVary, dimVarys)

IDL> status = CDFvarPut (id, varNum, recNum, indices, value)

IDL> status = CDFvarGet (id, varNum, recNum, indices, value)

IDL> status = CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, $
indices, counts, intervals, buffer)

IDL> status = CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, $

IDL> indices, counts, intervals, buffer)

' At least this used to be the case. IDL seems to be using a new online help facility that does not recognize user supplied
help files.

Y With the exception of the multiple variable access operations available via the Internal Interface

(<GET_,rVARs RECDATA >, <PUT_,rVARs RECDATA >, <GET ,zZVARs RECDATA >, and

<PUT ,zVARs RECDATA >). Because these operations deal with variables having different data types, the use of
structures to store the values would be the logical method to use. Unfortunately, IDL does not currently support the
manipulation of structures from within a C application (which is how CDF's IDL interface is implemented). Support of
these operations will hopefully be added in the future.

126

IDL> status = CDFvarClose (id, varNum)

IDL> attrNum = CDFattrNum (id, attrName)

IDL> varNum = CDFvarNum (id, varName)

IDL> epoch = computeEPOCH (year, month, day, hour, minute, second, millisecond)
IDL> EPOCHbreakdown, epoch, year, month, day, hour, minute, second, millisecond
IDL> epoch = parseEPOCH (epochString)

IDL> epoch = parseEPOCH! (epochString)

IDL> epoch = parseEPOCH2 (epochString)

IDL> epoch = parseEPOCH3 (epochString)

IDL> encodeEPOCH, epoch, epochString

IDL> encodeEPOCHI1, epoch, epochString

IDL> encodeEPOCH?2, epoch, epochString

IDL> encodeEPOCH3, epoch, epochString

IDL> encodeEPOCHX, epoch, format, epochString

The IDL data types to use for integer arguments are always longwords or arrays of longwords using IDL's data type of
TYP LONG.?" Attribute entries and variable values should have the data types corresponding their CDF data types.
CDF file names and variable/attribute names are IDL character strings. CDFid and CDFstatus are also longwords. The
CDF C Reference Manual may be used as a guide (especially for CDFlib). Arguments passed to the CDF
functions/procedures must obviously be created and initialized before the call. Arrays of longwords are necessary for
dimension sizes, variances, etc.”? Arguments returned by the CDF functions will be created to be of the proper data
type and size (they do not have to be created before calling the CDF function).

Also provided are two functions, row to col and col to row, that may be used to change the majority of
an array (or arrays) of values. This function is necessary because CDF can store variable values in either row or

column major order. The syntax of row to col is as follows. . .

IDL> status =row_to_col (inArray, outArray, numDims, dimSizes, numBytes, arrayCount)

where. . .

inArray The array (or arrays) of values to convert - row major ordering. Any valid IDL data type is
allowed.

OutArray The converted array (or arrays) of values - column major ordering. This array will be
created by row to col.

NumDims The number of dimensions in the array (or arrays). This value must be a longword.

DimSizes The size of each dimension. This must be an array of longwords - one longword per
dimension.

NumBytes The number of bytes in each value. This value must be a longword.

ArrayCount The number of arrays to convert. The order of the arrays will not be affected. This value
must be a longword.

Status Completion status code. This value will be a longword. The possible values are defined in

cdfl.pro.

! On DEC Alpha's running OSF/1, don't confuse the C data type of long with IDL's data type of TYP LONG. The C
long is eight bytes while IDL's TYP LONG is four bytes.

2 If an array in a call to a CDF function won't be used because a variable is 0-dimensional, a dummy array must still be
passed to avoid an error from the CDF library. Note that embedding a call to lonarr [such as lonarr(1)] in the call to the
CDF function will work but will result in a memory leak because the allocated array will not be freed.

127

Multiple arrays (records) of CDF variable values should always be stored with the last dimension of the IDL array
corresponding to the record number. For example, assume a CDF variable with two dimensions whose sizes are
[180,360]. If 50 records are to be stored, an IDL array with three dimensions whose sizes are [180,360,50] should be
used. If the CDF variables have row major ordering, row to col would be called with numDims set to 2, dimSizes set to
[180,360], and arrayCount set to 50.

The syntax of col to row is as follows. . .

IDL> status = col to_row (inArray, outArray, numDims, dimSizes, numBytes, arrayCount)

where. . .

inArray The array (or arrays) of values to convert - column major ordering. Any valid IDL data type
is allowed.

OutArray The converted array (or arrays) of values - row major ordering. This array will be created by
col to row.

NumDims The number of dimensions in the array (or arrays). This value must be a longword.

DimSizes The size of each dimension. This must be an array of longwords - one longword per
dimension.

NumBytes The number of bytes in each value. This value must be a longword.

ArrayCount The number of arrays to convert. The order of the arrays will not be affected. This value
must be a longword.

Status Completion status code. This value will be a longword. The possible values are defined in

cdfl.pro.

Col_to_row would be used in those cases where an array of values created by IDL (in column-major ordering)
are to be written to a row-major CDF.

B.6 Example IDL Session

The following IDL session will open a CDF (unsuccessfully at first - typo), add an entry to the MODS gAttribute, and
then close the CDF.

IDL> @cdfOx

IDL> status = CDFlib (CDFiif.OPEN , CDFiix.CDF _, 'yrdy3', id, CDFiif NULL)
IDL> status = CDFerror (status, text)

IDL> print, text

NO_SUCH_CDF: The specified CDF does not exist.

IDL> status = CDFlib (CDFiif.OPEN , CDFiix.CDF , 'test2', id, CDFiif NULL)
IDL> status = CDFerror (status, text)

IDL> print, text

CDF_OK: Function completed successfully.

IDL> status = CDFlib (CDFiif. SELECT , CDFiia. ATTR_NAME _, 'MODS/, $
IDL> CDFiif.GET , CDFiia. ATTR MAXgENTRY , maxEntry, $
IDL> CDFiif. NULL)

IDL> status = CDFerror (status, text)

IDL> print, text

CDF_OK: Function completed successfully.

128

IDL> status = CDFlib (CDFiif. SELECT , CDFiie.gENTRY , maxEntry + 1, $

IDL> CDFiif.PUT_, CDFiie.gENTRY_ DATA_, CDFdt.CDF_CHAR, 14L, $
IDL> 'Useless update', $
IDL> CDFiif. NULL) IDL> status = CDFerror (status, text)

IDL> print, text

CDF_OK: Function completed successfully.
IDL> status = CDFclose (id)

IDL> status = CDFerror (status, text)

IDL> print,text

CDF_OK: Function completed successfully.

As you can see, checking the return status from each call to the CDF library can be fairly tedious. A procedure such
as the following could be used to ease status code checking. . .

pro checkstatus, status

@cdfox

if (status It CDFic.CDF_OK) then begin
statusT = CDFerror (status, text)
print, text

endif

return

end

The first part of the sample IDL session could then be as follows. . .

IDL> .run checkstatus

IDL> @cdfOx
IDL> status = CDFlib (CDFiif.OPEN , CDFiix.CDF , 'yrdy3 id, $
IDL> CDFiif. NULL)

IDL> checkstatus, status

NO_SUCH_CDF: The specified CDF does not exist.

IDL> checkstatus, CDFlib (CDFiif OPEN , CDFiix.CDF , 'test2', id, $
IDL> CDFiif NULL)

As you can see, a call to a CDF function can be embedded in a call to checkstatus.

129

130

Appendix C

Status Codes

C.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF _error (for Fortran) can be used
within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF WARN < Warning codes < CDF OK < Informational codes

CDF OK indicates an unqualified success (it should be the most commonly returned status code). CDF WARN is
simply used to distinguish between warning and error status codes.

C.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR _NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN characters.
The attribute was created but with a truncated name. [Warning]

131

BAD ALLOCATE RECS

BAD ARGUMENT

BAD ATTR _NAME

BAD ATTR_NUM

BAD BLOCKING FACTOR'

BAD CACHESIZE

BAD CDF_EXTENSION

BAD_CDF_ID

BAD CDF_NAME

BAD_CDFSTATUS

BAD_COMPRESSION_PARM

BAD DATA_TYPE

BAD_DECODING

BAD DIM_COUNT

BAD DIM_INDEX

An illegal number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

" The status code BAD BLOCKING FACTOR was previously named BAD EXTEND RECS.

132

BAD DIM_INTERVAL

BAD DIM SIZE

BAD_ENCODING

BAD ENTRY NUM

BAD_FNC_OR_ITEM

BAD _FORMAT

BAD_INITIAL RECS

BAD MAJORITY

BAD _MALLOC

BAD NEGtoPOSfp0 MODE

BAD NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY MODE

BAD REC_COUNT

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. @ The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number of
elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran

applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

133

BAD REC_INTERVAL

BAD REC NUM

BAD_SCOPE

BAD SCRATCH_DIR

BAD SPARSEARRAYS PARM

BAD VAR NAME

BAD VAR NUM

BAD zMODE

CANNOT_ ALLOCATE RECORDS

CANNOT CHANGE

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessable (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

134

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF DELETE ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF_OPEN_ERROR

7. Writing "initial" records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a value
has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure sure that sufficient privilege exists to create the dotCDF file
in the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Unsufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.
Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

exists to open it. Also check that an open file quota has not
already been reached. [Error]

135

CDF_READ ERROR

CDF_WRITE _ERROR

COMPRESSION ERROR

CORRUPTED_V2_CDF

DECOMPRESSION ERROR

DID NOTCOMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_FOR_SCOPE

ILLEGAL IN_zMODE

ILLEGAL ON VI CDF

MULTI FILE FORMAT

NA_FOR_VARIABLE

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

An error occured while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

An error occured while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result if the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm choosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal. [Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

136

NEGATIVE_FP_ZERO

NO_ATTR SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY SELECTED

NO_MORE_ACCESS

NO_PADVALUE SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS IN_CDF

NO_WRITE ACCESS

NOT_A_CDF

One or more of the values read/written are -0.0 (an illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that delete
access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. In any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is not
applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file is a CDF that should

137

PRECEEDING RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ ONLY MODE

SCRATCH CREATE ERROR

SCRATCH _DELETE ERROR

SCRATCH_READ ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME ALREADY ALLOCATED

TOO_MANY_PARMS

TOO MANY_VARS

UNKNOWN COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED OPERATION
VAR _ALREADY CLOSED

VAR _CLOSE_ERROR

VAR_CREATE_ERROR

be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write

access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]

The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]

The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not

been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

138

VAR DELETE_ERROR

VAR _EXISTS

VAR _NAME_TRUNC

VAR _OPEN_ERROR

VAR _READ ERROR

VAR_WRITE_ERROR

VIRTUAL_RECORD DATA

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF files.
[Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN characters.
The variable was created but with a truncated name. [Warning]

An error occurred while opening variable file. Check that
suffficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

139

140

Appendix D

Sample Java and C Programs

D.1 Create CDFs

This program creates a couple of test CDF files. The first file, test.cdf, is filled with some global/variable attributes,
entries and zVariables. Data values are put into variables and copied from one variable to another. The second file,
testl.cdf, is created to hold two copied and duplicated variables from the first file.

i mport java.io.*;

i mport java.text.*;

i mport java.util.*;

i mport gsfc.nssdc. cdf.*;

i mport gsfc.nssdc.cdf.util.*;

/**

* This test program denpnstrates how to create a single-file CDF

* called test.cdf. It also copies a variable along with data out of
* test.cdf and creates a new single-file CDF called testl.cdf.

*

* Thi e program denonstrates the foll owi ng techni ques:

*

* - howto create a variable

* - how to create a global attribute

* - howto create a variable attribute

* - howto create a global variable attribute entry

* - howto create a variable attribute entry

* - how to add data to a variable

* - howto delete a variable attribute

* - how to rename a vari abl e

* - how to renanme a variable attribute

* - how to copy a variable with or w thout data

* - how to delete data (records) out of a variable

* - how to set options that are available with a CDF file and a variable
*

~

public class CreateCDF inpl enents CDFConst ant s{

public static void main(String[] args) {
CDF cdf = null,
cdf1 = null;
try {

/**/

/[* 1f the file to be created is a nultifile (not a single file), */
/* the following restrictions apply: */

141

[* */
/* - CDF file extension is not allowed (i.e. .cdf) */
/* - Conpression and sparse records are not all owed */
/* - Deleting a variable is not all owed */
/**/
File cdfFile = new File("test.cdf");

i

f (cdfFile.exists()) cdfFile.delete();

cdfFile = new File("testl.cdf");
if (cdfFile.exists()) cdfFile.delete();

cdf = CDF.create("test");

cdf1 = CDF.create("test1");

[l Any wite/put operation on a read-only file throws an exception.
11

/1 NOTE:

/1 If afile is open for creation, READONLYon flag is

11 i gnored. The READONLYon flag only works if a CDF file

/1 is opened with the open() nethod. Thus the READONLYonN

/1 flag set below is ignored.

cdf . sel ect ReadOnl yMode(READONLYoN) ;

cdf . set For mat (SI NGLE_FI LE) ; /1 Set to signle-file CDF
/***/

/* Set the information/warning nessage flag */

/* - By default, this flag is turned off */

/* - setlnfoWarningOn() turns on the flag */

/* - setlnfoWarningOff() turns off the flag */
/***/

/1 cdf.setlnfoWarni ngOn();

/***/

[* Create global and variable attributes */

/***/

Attribute

project = Attribute.create(cdf, "Project"”, G.OBAL_SCOPE),

pi = Attribute.create(cdf, "PI", G.OBAL_SCOPE),

t est = Attribute.create(cdf, "Test", G.OBAL_SCOPE),
validMn = Attribute.create(cdf, "VALIDM N', VAR ABLE SCOPE),
validMax = Attribute.create(cdf, "VALI DMAX', VARI ABLE SCOPE),
snafu = Attribute.create(cdf, "snafu", VAR ABLE SCOPE),
dunmy = Attribute.create(cdf, "dumy", VAR ABLE SCOPE);

Systemerr.println("Created attributes.");

/**********************/

/* Create variables */

/**********************/

| ong nuntl ement s =1,
nunDi ns = 1,
di nvary[] = {VARY},
noDi nVar y[] = {NOVARY},
di mvari ancel[] = {VARY, VARY},

di nvari ance?2[| { VARY, NOVARY};

Vari abl e
| atitude = Variable.create(cdf, "Latitude",
CDF_| NT1,
1, 1, newlong [] {3},
NOVARY

new | ohg [T {VARY}),

142

/* recVary */

[atitudel Vari abl e. create(cdf, "Latitudel",
CDF_UI NT1,
1, 1, newlong [] {3},
VARY,

new | ong [] {NOVARY}),

| ongi tude = Variabl e.create(cdf, "Longitude",
CDF_I NT2,
nunkl erent's, nunDi s,

new long [] {3}, [* di nGizes */
VARY, /* recVary */
new long [] {VARY}),
| ongi tudel = Vari abl e. creat e(cdf, "Longitudel",
CDF_Ul NT2,
nuntl ements, nunDi ns,
new long [] {3}, [* dinGizes */
VARY, /[* recVary */
di mvary), [* dimvary */

delta = Variable.create(cdf, "Delta",
CDF_| NT4,
1, 2, newlong [] {3, 2},
VARY, dinVariancel),

é.

Vari abl e. create(cdf, "Tine",
CDF_Ul NT4,
1, 2, newlong [] {3, 2},
VARY, dinVariancel),

dvar Vari abl e. create(cdf, "dvar", CDF_INT2,
1, 1, newlong [] {3},
NOVARY,

new long [] {NOVARY}),

name Vari abl e. create(cdf, "Nane",
CDF_CHAR,
10, 1, newlong [] {2},
VARY,

new long [] {VARY}),

Vari abl e. create(cdf, "Tenp", CDF_FLOAT,
1, 1, newlong [] {3},
VARY,
new long [] {VARY}),

tenp

Vari abl e. create(cdf, "Tenpl", CDF_REAL4,
1, 1, newlong [] {3},
VARY,
new long [] {VARY}),

tenmpl

Vari abl e. create(cdf, "Tenperature", CDF_FLOAT,
1, 0, newlong [] {1},
VARY,
new long [] {NOVARY}),

tenp2

temp3 Vari abl e. create(cdf, "Tenperaturel”, CDF_FLOAT,
1, 1, newlong [] {3},
NOVARY,

new long [] {VARY}),

temp4 = Variabl e.create(cdf, "Tenperature2", CDF_FLOAT,

1, 0, newlong [] {1},

143

~~
~~

NOVARY,
new long [] {NOVARY}),

dp = Variable.create(cdf, "dp", CDF_DOUBLE,
1, 1, new long [] {3},
VARY,
new long [] {VARY}),
ep = Variable.create(cdf, "ep", CDF_EPOCH,

1, 1, new long [] {2},
VARY,
new | ong [] {VARY}),

dummyVar = Vari abl e. create(cdf, "DunmyVar",

CDF_EPQOCH,
1, 1, newlong [] {2},
VARY,

new | ong [] {VARY});

Systemerr.println("Created vari ables.");

/*********************************/

[* Set m scell eneous settings. */
/*********************************/

cdf . set Conpressi on(RLE_COVPRESSI ON, new | ong[] {0});

cdf . set Maj ority(RONMAIOR) ; [* Default is RONNMAIOR */
/1 cdf.set Encodi ng(SUN_ ENCODI NG ;

cdf . sel ect Negt oPosf pO(NEG oPOSf pOof f) ;
cdf . sel ect CDFCacheSi ze(400L) ;

cdf . sel ect Conpr essCacheSi ze(500L) ;

cdf . sel ect St ageCacheSi ze(600L) ;

Systemerr. println("Mde: "+
cdf . confirmeMde());
Systemerr.printin("Neg -0.0 to 0.0: "+

cdf . confi r mNegt oPosf pO())
Systemerr.println("CDF Cache si ze:

cdf . confirnCDFCacheSi ze()) ;
Systemerr. println("Conpression Cache Size: "+

cdf . confi rnOon‘pressCacheS| ze())
Systemerr.println("Stage Cache Size:

cdf . confirntt ageCacheSi ze()) ;

Systemerr.println("\nDefined COF file options...");

dvar.setDi nVari ances (new long [] {VARY});

| ongi t ude. sel ect CacheSi ze(700L) ;

| ongi t ude. set Conpr essi on(GZI P_COMPRESSI ON, new long[] {9});
| ongi t ude. set PadVal ue(new Short ((short) -99));

| ongi t ude. set Bl ocki ngFact or (130L) ;

| ongi tude. setlnitial Records(20L);

/1 Only applicable to conpressed z vari abl es
| ongi t ude. sel ect ReservePercent (15L);

Systemerr.println("Cache Size (longitude): "+

| ongi t ude. confi rntCacheSi ze());
Systemerr.println("Reserver Percentage (longitude): "+
| ongi t ude. confirnmReservePercent());

tenp. set Spar seRecor ds(PAD_SPARSERECORDS) ;

ti me. set Spar seRecor ds(PAD_SPARSERECORDS) ;
ep. set Spar seRecor ds(PREV_SPARSERECORDS) ;

144

/1 Only applicable to unconpressed Z vars in a single-file CDF.
ep. al | ocat eRecords(3L);

long firstRec = 9, lastRec = 20;
time.allocateBl ock(firstRec, |astRec);

Systemerr.println ("tinme.getAllocatedFron(4L): "+
time.get All ocat edFron(4L));

Systemerr.println ("tine.getAllocatedTo(13L): "+
time. get All ocat edFrom(13L));

/***/

/* Add entries to global attributes */
[* */
/* NOTE: entry value nust be a Java object */
/***/

Doubl e entryVal ue = new Doubl e(5. 3432);
Systemerr.println("Addi ng gl obal attribute entries...");

Entry.create(project, 0, CDF_CHAR, "Using the CDFJava API");
Entry.create(pi, 3, COF_CHAR, "Ernie EIs")
Systemerr.println(\tchars conpleted.");

Entry.create(test, 0, CDF_DOUBLE, entryVal ue);
Entry.create(test, 1, CDF_DOUBLE, new double []{5 3, 2.3});
Systemerr.println(" \ t doubl es compl eted.");

Entry.create(test, 2, CDF_FLOAT, new Float(5.5));
Entry.create(test, 3, CDF_FLOAT,

new fl oat [{(float)55(float)10 2});
Systemerr.printin("\tfloats conpleted.");

Entry.create(test, 4, CDF INT1, new Byte((byte)l));
Entry.create(test, 5, CDF_INT

new byte [] {(yte) 1, (byte)2 (byte)3});
Systemerr.println("\tbytes con‘pleted)

Entry.create(test, 6, COF_I NT2, new Short((short)-32768));
Entry.create(test, 7, CDF_INT2,

new short [T {(short)1l, (short)?2});
Systemerr.println("\tshorts conpleted.");

Entry.create(test, 8, CDF_INT4, new Integer(3));
Entry.create(test, 9, CDF_INT4, new int [] {4,5});
Systemerr.println(" \tmtegers compl eted. ") ;

Entry.create(test, 10, CDF_ CHAR, "This is a string");
Systemerr.println("\tString conpleted.");

Entry.create(test, 11, COF_U NT4, new Long(4294967295L));
Entry. create(test, 12, COF_Ul NT4,

new | ong[] {4294967295L 2147483648L}) ;
Systemerr.println("\tU NT4 conpleted.");

(65535)) ;

Entry.create(test, 13, COF_Ul NT2, new | nt eger
[1{65535, 65534});
|),

Entry. create(test, 14, COF_U NT2, new i nt
Systemerr. pr|ntln("\tUIl\|'I'2 con‘pleted '
Entry.create(test, 15, COF_U NT1, new Short((short)255));
Entry.create(test, 16, COF_U NT1, new short[] {255, 254});
Systemerr. pr|ntln("\tUINT1 corrpleted ")

145

11

/************************************/
/* Add variable attribute entries */

/************************************/

Systemerr.println("Adding variable attribute entries...");

Entry.create(validM n, longitude.getlD(), CDF_|INT2,

new Short ((short)10));
[atitude. putEntry(validM n, CDF_INT2, new Short((short)20));
Systemerr.printin("\tadded VALIDM N entries.");

| ongi t ude. put Entry(val i dMax, CDF_I NT2, new Short ((short)180));
[atitude. putEntry(validMvax, CDF_INT2, new Short((short)90));
Systemerr.println("\tadded VALI DMAX entries.");

| ongi tude. put Entry(snafu, CDF CHAR, "testl");
Systemerr.println("Added snafu for Longitude.");

| ongi tude. put Entry(dumry, CDF CHAR, "test2");
Systemerr.println("Added dumy for Longitude.");

/*************************/

/* Delete an attribute */

/*************************/

dummy. del ete();

/***********************/

/[* Add variable data */
/***********************/
| ong recNum

r ecCount

recl nterval

i ndi ci es[]

di m ndi ci es[]
di mCount s[]

di m nterval s[]

I
e

I mmn
e e el Y Y

Systemerr.println("Adding variable data...");

/***************************/

/[* Add data to longitude */
/***************************/
| ong st atus;
short [][] longitudeData = {{10, 20, 30},
{40, 32767, -32768}};

| ongi t ude. put Si ngl eDat a(recNum i ndi ci es, new Short ((short)100));
status = cdf.getStatus();
if (status !'= CDF_OK) {
String statusText = CDF.get StatusText (status);
Systemerr.println (statusText);

}

| ongi t ude. put Si ngl eDat a(0OL, new | ong[] {1}, new Short ((short)200));
| ongi t ude. put Si ngl eDat a(0OL, new Il ong[] {2}, new Short((short)300));
Systemerr.printin("\tAdded a single longitude variable data.");

recNum = 2;
| ongi t ude. put Hyper Dat a(recNum recCount, reclnterval,
di m ndi ci es, di mCounts, dimntervals,
| ongi t udeDat a) ;
Systemerr.println("\tAdded a hyperput |ongitude variable data.");

recNum = 10;
| ongi tude. put Record (recNum new short[] {11, 22, 33});

146

Systemerr.println("\tAdded a single longitude variable data.");

/****************************/

/[* Add data to |ongitudel */
/****************************/
int []1[] longitudelbData = {{21, 31},
{51, 61},
{32767, 65535}};

| ongi t udel. put Si ngl eDat a(OL, indicies, new Integer((int)101));

| ongi tudel. put Si ngl eDat a(0L, new long[] {1}, new Integer((int)201))
| ongi tudel. put Si ngl ebDat a(0OL, new long[] {2}, new Integer((int)301));
Systemerr.println("\tAdded a single |longitudel variable data.");

recNum = 1,
dimnterval s[0] = 2;
| ongi t udel. put Hyper Dat a(recNum 3, reclnterval,
di m ndicies, new long[] {2},
di nlnterval s,
| ongi tudelDat a) ;
Systemerr.println("\tAdded a hyperput |ongitudel variable data.");

/**************************/

/* Add data to latitude */

/**************************/

byte [][] latitudeData = { {15, 25, 35},
{45, 127, -128} };

| ati tude. put Si ngl eDat a(OL, indicies, new Byte((byte)l));

| ati tude. put Si ngl eData(OL, new long[] {1}, new Byt e((byt e)2));
I atitude. put Si ngl eData(OL, new long[] {2}, new Byte((byte) 3)) ;
Systemerr.println("\tAdded a single latitude variable data.");

/***************************/

/* Add data to latitudel */

/***************************/

short [][] latitudelData = { {15, 25, 35},
{100, 128, 255} };

[atitudel. put Si ngl eData(OL, new long[] {2}, new Short((short)5));
Systemerr.println("\tAdded a single latitudel variable data.");

/] This record will overwite the first record

recNum = 1;
recCount = 2;
| ati tudel. put Hyper Dat a(recNum recCount, reclnterval,
new long[] {0}, new long[] {3},
new long[] {1}, latitudelData);
Systemerr.println("\tAdded a hyperput |atitudel variable data.");

/***********************/

/* Add data to Delta */

/***********************/

int []J[][] deltabata = { {{10, 20}, {40,50}, {7, 8}},
{{90, 95}, {96,97}, {32767, -32768}}

del ta. put Si ngl eDat a(OL, new long[] {0,0}, new Integer((int)110));
del ta. put Si ngl eDat a(OL, new long[] {0, 1}, new Integer((int)210));
del ta. put Si ngl eDat a(OL, new long[] {1,0}, new Integer((int)310));
del t a. put Si ngl eDat a(0L, new long[] {1,1}, new Integer((int)410))
del ta. put Si ngl eDat a(0OL, new long[] {2,0}, new Integer((int)510))
del ta. put Si ngl eDat a(OL, new long[] {2,1}, new Integer((int)610));

147

del ta. put HyperData(1L, 2L, 1L, new long[] {0,0}, new long[] {3, 2},
new long[] {1,1}, deltaData);

Systemerr.println("\tAdded delta data.");

/**********************/

/* Add data to Tine */
/**********************/
long [][][] timeData = {{{10, 20}, {40, 50},{70, 80}},
{{90, 95}, {96,97},{2147483648L, 4294967295L}}

time. put Si ngl eDat a(0OL, new long[] {0,0}, new Long((long)100));
time. put Si ngl eDat a(0L, new long[] {0, 1}, new Long((! ong)200));
time. put Si ngl eDat a(0OL, new long[] {1, 0}, new Long((long)300));
time. put Si ngl eData(0OL, new long[] {1, 1}, new Long((l ong)400));
time. put Si ngl eDat a(OL, new long[] {2,0}, new Long((l ong)500));
time. put Si ngl eDat a(0OL, new long[] {2,1}, new Long((l ong)600));
time. put Hyper Dat a(5L, 2L, 1L, new long[] {0,0}, new long[] {3, 2},

new long[] {1,1}, tineData);
Systemerr.printin("\tAdded tine data.");

/**********************/

/[* Add data to dvar */

/**********************/

short [][] dvarData = {{15, 25, 35},
{100, 128, 255} };

dvar. put Si ngl eDat a(0OL, new long[] {0}, new Short((short)5));
dvar. put Si ngl eDat a(1L, new long[] {1}, new Short((short)6));
Systemerr.println("\tAdded a single dvar variable data.");

recNum = 1;
recCount = 2;
dimnterval s[0] = 1;
dvar . put Hyper Dat a(recNum recCount, reclnterval,
di m ndi ci es, di mCounts, dimntervals,
dvar Dat a) ;
Systemerr.println("\tAdded a hyperput |atitudel variable data.");

/*********************/

/[* Add String data */

/*********************/

String [] ndata = new String[2];

ndata[0] = "abcd";

ndat a[1] = "bcdefghij";

nane. put Si ngl eDat a(0L, new long[] {0}, new String("123456789"));
namne. put Si ngl eDat a(0OL, new long[] {1}, new String("13579"));

Systemerr.println("\tAdded a single string data.");

nane. put Hyper Dat a(1L, 1L, 1L,
new long[] {0}, new long[] {2}, new long[] {1},
ndat a) ;

Systemerr.println("\t Added hyperput name data.");

/*******************/

/[* Add Tenp data */

/*******************/

float [][] tenpData = {

148

tenp. put Si ngl eDat a(0L, new | ong[] {0}, new Float("55.5"));
tenmp. put Si ngl eDat a(OL, new long[] {2}, new Float("66.6"));

Systemerr.println("\tAdded a single tenp data.");

tenmp. put Hyper Dat a(1L, 3L, 1L,
new long[] {0}, new long[] {3}, new long[] {1},
t emrpDat a) ;

Systemerr.println("\t Added hyperput tenp data.");

/********************/

/[* Add Tenpl data */

/********************/

float [][] tenplData = {{(fl oat
{(fl oat

tenmpl. put Si ngl ebat a(0L, new | on

9[]
tenpl. put Si ngl eDat a(0L, new | ong[]
tenmpl. put Si ngl ebat a(0L, new | ong[]

0}, new Float(5.5));
1}, new Float(-0.0));
2}, new Float (6.6));

Systemerr.println("\tAdded a single tenmpl data.");

float tenplRec[] = {(float)9.5, (float)-0.0, (float)8.5};
tenpl. put Record(1L, templRec);

tenpl. put Hyper Dat a(2L, 2L, 1L,
new long[] {0}, new long[] {3}, new long[] {1},
tenmplDat a);

Systemerr.println("\t Added hyperput tenmpl data.");

/**/

[* Add Tenp2 data - scalar Record Varying */

/**/

t enp2. put Scal ar Dat a(0L, new Fl oat ("55.55"));
t enp2. put Scal ar Dat a(1L, new Fl oat ("66. 66"));

Systemerr.println("\tAdded a scal ar tenp2 data.");

/********************/

/[* Add Tenp3 data */

/********************/

t emp3. put Recor d(t enplRec);

Systemerr.println("\t Added a non-scal ar tenp3 data.");

/**/

/* Add Tenp4 data - scal ar Non-Record Varying */

/**/

t emrp4. put Scal ar Dat a(new Fl oat ("77.77"));

Systemerr.println("\tAdded a scalar tenmp4 data.");

/*****************/

/* Add dp data */

/*****************/

double [][] dpData = {{(double)9.5, (double)7.5, (double)8.5},
{(doubl €) 10. 5, (double)10.6, (double)10.7},
{(doubl €) 20. 5, (double)?20.6, (double)20.7}};

dp. put Si ngl eDat a(1L, new long[] {0}, new Doubl e("18888.8"));

dp. put Si ngl eDat a(1L, new long[] {2}, new Doubl e("19999.9"));

149

Systemerr.println("\tAdded a single dp data.");

dp. put Hyper Dat a(5L, 3L, 1L
new long[] {0}, new long[] {3}, new long[] {1},
dpDat a) ;

Systemerr.println("\t Added hyperput dp data.");

/*****************/

/[* Add ep data */

/*****************/

doubl e epData = Epoch.conpute(1999, 3, 5, 5, 0, O,
epDat al = Epoch. conpute(1998, 1, 2, 3, 0, O,

String e0 = Epoch. encode(epbDatal);

doubl e pO = Epoch. parse(e0);

0),
0)

ep. put Si ngl eDat a(0OL, new I ong[] {0}, new Doubl e(epData));
ep. put Si ngl eDat a(0OL, new long[] {1}, new Doubl e(p0));

/**/

/* Renane a variable and an attribute */
/**/
dvar. renane("fo0");

Systemerr.println("Renamed a variable.")

val i dM n. renane("val i dm n");
Systemerr.println("Renamed an attribute.");

/**************************************/

[* Get the attribute nane and scope */
/**************************************/
String scope;
if (project.getScope() == G.OBAL_SCOPE)
scope = "gl obal ";
el se
scope = "vari abl e";
Systemerr.println ("Attribute "project': \n"+
"\t nanme: "+project.getName()+
"\'n\tscope: "+scope);

/**/

/[* Copy a variable - this only copies netadata */
/**/

/1 The current CDF file MJST be saved first (by calling the save()
/1 method) before 'copying/duplicating data records' operation is
[l performed. Oherw se the programw |l either fail or produce
/1 undesired results.

cdf . save();

| ongi t ude. copy ("Il ongi t ude_copy");
Systemerr.println("Copied a variable.");

/1l Get the variable just copied and set its record variance.
Vari abl e | ong_copy;

| ong_copy = cdf.getVariabl e("l ongitude_copy");

/1 1 ong_copy. set RecVari ance(NOVARY) ;

/1 Copy the 'longitude' variable to 'longitude _copy' and put
/1 '1ongitude copy" into testl.cdf.

| ongi tude. copy(cdfl, "l ongitude_copy");
Systemerr.println("Copied a variable into another CDF.");

150

| ongi t ude. copyDat aRecor ds(| ong_copy) ;
| ongi t ude. concat enat eDat aRecor ds(| ong_copy) ;

/***/
/[* Duplicate a variable */
/* - copies everything including nmetadata, data, and */
/* ot her settings such as bl ocking factor, conpression, */
/* spar seness, and pad val ue */

/***/

cdf . save();

| ongi tude. dupl i cate("l ongitude_dup");
| ongi tude. dupl i cate(cdfl, "longitude_dup");

/***********************/
/* Delete a variable */

/***********************/

dummyVar . del et e() ;
Systemerr.println("Deleted a variable.");

/**/
[* Delete a variable and gl obal entry */

/**/

val i dM n. del eteEntry(l atitude);
Systemerr.printin("Deleted a variable entry.");

long entrylD = 1;
test.del eteEntry(entryl D);
Systemerr.printin("Deleted a global entry.");

/**/

/* For variables with sparse and/or conpressed records, */
[* the CDF file must be saved first before records can */
/* Dbe properly del eted. */
[* */
/* NOTE: It's always safe to save a CDF file, before */
/* del eting any variabl e records. */

/**/

cdf . save();

/**********************/

[* Delete record(s) */
/**********************/

firstRec = 1;

lastRec = 2;

time. del eteRecords(firstRec, |astRec);

/************************************/
/[* This should throw an exception */

/************************************/

[l Attribute badAttribute;

/1 badAttribute = Attribute.create(cdf, "Project", G.OBAL_SCOPE)
cdf . cl ose();

cdf 1. cl ose();

Systemerr.println("** Tested successfully **");

} catch (Exception e)

{
Systemout. println("A bad thing happened on the way to the CDF.");
e.printStackTrace();

151

D.2 Read CDF

This program reads and displays the data contents of a CDF file (test.cdf) that was created by CreateCDF java in D.1.

i mport java.io.?*;

i mport java.text.?*;

i mport java.util.*;

i mport java.lang.reflect.?*;

i mport gsfc.nssdc. cdf.*;

i mport gsfc.nssdc.cdf.util.*;

/**

* This program denonstrates how to read the contents of test.cdf created

* by CreateCDF.java in this directory.
*/

public class ReadCDF inpl ements CDFConst ant s{

public static void main(String[] args) {

String fileName = "test";
i nt maxVar NaneLength = 22;
try {

CDF cdf = null;
if (args.length ==

cdf = CDF.open(fileName, READONLYoff);

el se {
fileName = args[O0];

cdf = CDF.open(fileName, READONLYoff);

}

/**/
[* |If a decoding nethod is not specified when a CDF file is */
/* opened, the CDF |ibaray knows what encodi ng net hod was */
/* used to create the CDF file. */
/* */
/* Decodi ng met hod should be specified only if one needs */
/* to translate data fromone platformto another. */

/**/

/1 cdf. sel ect Decodi ng(NETWORK_DECCODI NG) ;

/**********************************/

/* Print out the file information */

/**********************************/

i f (cdf.confirnmReadOnl yMode() == READONLYonN)
Systemout.println("CDF File: "+cdf +" (READONLYoN)");
el se {
Systemout.println("CDF File:
}

System out. println("Version:
String cp = cdf. get Copyright();
System out . printl n("Copyri ght: "+cp);
System out. println("Fornat: "+CDFUti | s. get StringFormat (cdf));
System out . printl n("Encodi ng: "+

CDFUti | s. get StringEncodi ng(cdf));
System out. printl n("Decodi ng: "+

CDFUti | s. get StringDecodi ng(cdf));

"+cdf +" (READONLYoOff)");

"+cdf . getVersion());

152

Systemout.println("Mjority: "+
CDFUtils.getStringMajority(cdf));

System out. println("nunRvars: "+cdf . get Nurerars'()) ;
System out. printl n("nunZvars: "+cdf . get Nunzvars());
Systemout.println("numittrs: "+cdf . get NumAttrs() +

("+cdf.getNunzattrs()+" global, "+
cdf.get Nunvattrs()+" variable)");
System out . printl n(" Conpression: "+cdf.get Conpression());
System out. println("cPct: "+cdf . get Conpr essi onPct ());
System out. println("Cache Size: "+cdf . confi r nCDFCacheSi ze()) ;
/**/

/* Print out the Aobal Attribute information */
/**/

Attribute a;
String attrName = nul | ;
int i;

| ong n = cdf.getNuntGattrs();
Vect or ga = cdf.getd obal Attributes();

System out . printl n("\ nd obal Attributes ("+n+" attributes)\ n"+

i = 0;
(Enumaration e = ga.elenents() ; e.hasMreEl ements() ;) {
= (Attribute) e.nextEl enent();
n = a.getNunEntries();
if ==

(i
attrName = a.get Nanme();
if (n <= 1)

Systemout.println (attrName+" ("+n+" entry):");
el se

Systemout.println (attrName+" ("+n+" entries):");

el se {
String currAttrNane = a.getNane();;
if (currAttrNanme != attrNanme) {

if (n<=1)
Systemout.println (currAttrName+" ("+n+" entry):");
el se
Systemout.println (currAttrNane+" ("+n+" entries):");
}
}
i ++;

Vector ent = a.getEntries();
for (Enuneration el =ent.elenments() ; el.hasMreEl ements() ;) {
Entry entry = (Entry) el.nextEl enent();
if (entry !'=null)
if (entry.getlD() == 11)
entry. delete();
el se {
| ong eDat aType = entry. get Dat aType();
Systemout.print ("\t"+entry.getl)
CDFUti | s. get Stri ngDat
"/"+entry. get Nunkl ene
II): \tll).
CDFUti | s. printData (entry getData());
Systemout.println (" "

+ ("+
aType(eDat aType) +
nts()+

}
}

}
Systemout.println (" ");

/**/

153

/* Print out the Variable Attribute information */
/**/

attrNanme = nul |l ;

n = cdf.getNunVattrs();
Vector va = cdf.getVariableAttributes();

System out . prlntln("\nVarlabIe Attributes ("+n+" attrlbutes)\n"+

i = 0;
(Enurmeration e = va.elenents() ; e.hasMreEl enents() ;) {
= (Attribute) e.nextEl enent();
if (i == 0)
attrName = a.get Name();
Systemout.println (attrName+":");

el se {
String currAttrNane = a.getNane();;
if (currAttrNanme != att r Name
Systemout.println (currAttrNanme+":");

i ++;
Vector ent = a.getEntries();
for (Enuneration el =ent.elenments() ; el.hasMreE ements() ;) {
Entry entry = (Entry) el.nextEl enment();
if (entry I'= null)
| ong eDat aType = entry. get Dat aType();
Variable v = cdf.getVariable(entry.getlD());
Systemout.print ("\t"+v.getNanme()+" ("+
CDFUti | s. get StringDat aType(eDat aType) +
"/"+entry. get NuntEl ement s() +

SHE

COFUils.printData (entry.getData());
Systemout.println (" ");

}
}Systemout.pri ntin (" ");

/**************************************/
/* Print out the Variable information */

/**************************************/
String varName, dataType;

i nt noCf Bl anks;

| ong nunDi ns;

n = cdf.get NunVars();

Vector vars = cdf.getVariables();

System out . printl n(\nVar| able Information ("+n+" vari abl es)\ n"+

for (Enunmeration e = vars.elenents() ; e.hasMreEl ements() ;) {'
Variable v = (Variable) e.nextEl enment();

var Name = v. get Name();
noCf Bl anks = maxVar NameLength - var Name. | engt h();
for (i=0; i < noOFBlanks; i++)

var Nane = varName + " ";

| ong[] dintizes = v.getD nGi zes();
dat aType = CDFUti | s. get StringDataType(v. getDataType());
dat aType = dataType + "/" + String.val ueO (v. get Nuntl ements());
noxf Bl anks = 14 - dataType.length();
for (i=0; i < noOrFBlanks; i++)
dat aType = dataType + " ";

154

}

nunDi ns = v. get NunDi ns() ;
System out. print (varNane+dat aType+ nunDins+":[");
for (i=0; i < nunDins; i++) {
if (i >0) Systemout.print (",");
Systemout.print (dinSizes[i]);

-

Systemout.print ("J\t");
[/ if (numDins == 1) Systemout.print ("\t");

Systemout.print((v.getRecVariance() ? "T" : "F")+"/")
| ong[] dinVvariances = v.getD nVariances();
for (i=0; i < v.getNunDims(); i++)
System out . pri nt (
((di nVari ances[i] == CDFConstants.VARY) ? "T"
Systemout.println (" ");

"))

/**/
/[* Print out the Variable data (all variables in the CDF)

/**/

CDFData data = nul | ;

| ong
| ong
| ong
| ong

for

nunmRecs, maxRec;
[1 dimndices = {0L};
[] dimntervals = {1L};
[]1 dinGizes = {1L};

(Enurmeration e = vars.elements() ; e.hasMreE enents()
Variable v = (Variable) e.nextEl enment();

if (v.getNumDinms() > 0) {
di nSi zes = v. getDi nGi zes();
dimnterval s = new | ong[di nSi zes. | engt h] ;
di m ndi ces = new | ong[di nGi zes. | engt h] ;
for (i=0; i < dinfizes.length; i++) {
dimnterval s[i] = 1;
di m ndi ces[i] 0;

}
}
nmaxRec = v.get MaxWittenRecord();
nunRecs = v.get Num¥ittenRecords();
var Name = v. get Name();
Systemout.println (varNane);
for (i=0; i < varNane.length(); i++)
Systemout.print ("-");
Systemout.println (" ");

if (v.getConpressionType() == NO _COVPRESSI ON)
Systemout. println ("Conpression: None") ;
el se
Systemout. println ("Conpression: "+
v. get Conpression()+" ("+
v. get ConpressionPct () +" % ") ;
Systemout.println ("Pad val ue: "+
v. get PadVal ue());

Systemout.println ("Records: "+
nunRecs+"n/ " +maxRec+"x") ;
Systemout.println ("Allocated: "+

v. get NumAl | ocat edRecords() +"n/ "+

v. get MaxAl | ocat edRecord() +"x");
Systemout.println ("Bl ocking Factor: "+

v. get Bl ocki ngFactor());

155

*/

) o

Systemout.println ("Sparseness: "+
CDFUti | s. get StringSparseRecord(v));
Systemout.println (" ");

/**/

/* maxRec represents the last record nunber for this */
/* variable, not the nunber of records. */
/* */
/* NOTE: maxRec starts at 0, so if the value of maxRec */
/* is 2, the actual nunber of records is 3. */
/* If there are no records exists, the value of */
/* maxRec is -1. */
/**/

for (i=0; i <= maxRec; i++)
Systemout.println ("Record # "+i+":");
data = v.get HyperDataCbject(i, 1, 1,
di m ndi ces,
di nSi zes,
di mnterval s);
dat a. dunpDat a() ;
Systemout.printlin(" ");

}

/**/

/* Print out a few individual variable data and */
/* attribute entries. */
/**/

if (fileNanme.equals("test")) {

oo ———-———————————=—=——=——=—==") ,
Vari abl e | ongi tude = cdf. get Vari abl e("Longitude"), [* TI'T
latitude = cdf.getVariable("Latitude"), [* FI'T
| atitudel = cdf.getVariable("Latitudel"), [* TIF
time = cdf.get Variabl e("Ti me"), [* TI'T
foo = cdf.get Vari abl e("fo00"), I* FI'F
Y% = cdf.getVariabl e("l ongi tude_dup");

Systemout.println ("l ongDup. dunmpbData():");
Systemout.println ("------------------ "),
if (v.getNunDinms() > 0) {

= v.get D nBi zes() ;

di nSi zes
dimnterval s new | ong[di nSi zes. | engt h] ;
di m ndi ces new | ong[di nSi zes. | engt h] ;

for (i=0; i < dinfizes.length; i++) {
dimnterval s[i]

di m ndi ces[i] 0;
) }
maxRec = v.get MaxWittenRecord();
for (i=0; i <= maxRec; i++)
Systemout.println ("Record # "+i +":");
data = v.get HyperDataCbject(i, 1, 1,
di m ndi ces,
di nSi zes,
di m nterval s);
dat a. dunpDat a() ;
Systemout.println(" ");
}

Systemout.print ("Record #0 for latitude: ");

156

*/
*/
*/
*/
*/

COFUils.printData (latitude.getRecord (0));
Systemout.println ("");

Systemout.print ("Record #1 for longitude: ");
COFUtils.printData (| ongitude. getRecord (1));
Systemout.println ("");

Systemout.print ("Record #2 for latitudel: ");
COFUtils.printData (latitudel. getRecord (2));
Systemout.printin ("");

Systemout.print ("Record #0 for foo: ");

CDFUti | s. printData (foo get Record (0));
Systemout.println ("\n");

Systemout.print ("1st element of record #0 for latitude: "
COFUtils.printData (Il atitude. get SingleData(0, new |long [] {0}))
Systemout.println ("");

Systemout.print ("2nd el ement of record #1 for |ongitude: ");
COFUils.printData (| ongitude. getSinglebData(l, new long [] {1}));

Systemout.println ("");

Systemout.print ("3rd elenment of record #2 for |ongitude: ");
CDFUti | s. prlntDa a (latitudel.getSinglebData(2, newlong [] {2}));
Systemout.println ("");

System out . pri nt ("1t el ement of record #0 for foo: "

CDFUti | s. pr|ntDa a (f oo getS| ngl ebData (0, new long [] {0}))
Systemout.println ("\

CDFDat a dat aRecor d;

Systemout.print ("(1,0)th elenent of record #0 for Tine: ");
dat aRecord = tine. get Si ngl eDat athj ect (0, new long[] {1,0});
dat aRecor d. dunpDat a() ;

Systemout.print ("(1,1)th elenent of record #0 for Tine: "
Long tValue = (Long) tine.getSinglebData(0, new |long[] {1, 1})
Systemout.println (tValue);

Systemout.println ("Record #0 for Time: ");
dat aRecord = tinme. get RecordObj ect (0OL);
dat aRecor d. dunpDat a() ;
Systemout.println ("\n");
Syst em out . prlntln ("Record #0 for Time: "
long[]1[] vy (long [1[]) tinme. getRecord(OL)
for (int x=0; x<3 X++)

for (int j—O;j<2;j++)

Systemout.println("["+x+","+j+"] ="+yy[x][j]);

Systemout.println ("\n");

Vari abl e var;

var = cdf.getVariabl e(" Tenperature2");
Systemout.print ("getScal arData for Temperature2: ");
COFUils.printData (var.getScal arData());
Systemout.println ("\n");

System out. print ("getScal arDataCbj ect for Tenperature2: ");
dat aRecord = var. get Scal ar Dat aChj ect () ;
dat aRecor d. dunpDat a() ;

var = cdf.getVariabl e(" Tenperature");

157

Systemout.print ("Record #0 for Tenperature: ");
COFUtils.printData (var.get Scal arData(0L));
Systemout.println ("\n");

Systemout.print ("Record #1 for Tenperature: ");
dat aRecord = var. get Scal ar Dat aCbj ect (1L);
dat aRecor d. dunpDat a() ;

var = cdf.getVariable("Delta");

Systemout.println ("HyperGet for Delta: ");

int[JI1[] xx = (int []1[]1[]) var. getHyperData (1L, 3L, 1L,
newlong[
new | ong|
new | ong[

for (int x=0;x<2; x++)
for (int j=0;j<2;j++)
for (int k=0; k<2; k++)

1 {1
1 {2
1 {1

R NO
e
— -

Systemout. println("["+x+", "+ +", "+k+"] ="+xx[x][j1[k]);

int[]J[] zz = (int [][]) var.getHyperData (OL, 3L, 1L,
new | ong[

] {0
new long[] {3
1 {1

new | ong[
Systemout.printlin(" ");
for (int x=0;x<3; x++)
for (int j=0;j<3;j++

Systemout. println("["+x+","+ +"] ="+zz[x][j]);

Systemout.println ("\n");

Systemout.println("\n\nVariable/d obal Attribute Entries' +
"\ n::::::::::::::::::::::::::::::::::

Attribute test = cdf.getAttribute("Test"), /* gl obal
validMn = cdf.getAttribute("validmn"); /* var */

Entry tEntry
VEntry

test.getEntry(15),
val i dM n. get Ent ry(| ongi t ude) ;

long attrNum = test.getl X);
Attribute testl = cdf.getAttribute(attrNum;

Systemout.print (testl.getNanme()+": \n\t");
COFUtils.printData (tEntry. getData())
Systemout.println ("");

Systemout.print ("\nVALIDM N: \n\tLongitude: ");
COFUtils.printData (vEntry. getData());
Systemout.printin ("");

Systemout.print ("\nVALIDl\/AX: \n\tlLatitude: ");
var = cdf.getVariable("Latitude");
COFUils.printbData (var. getEntryData("VALI DVAX")) ;
Systemout.println ("");

}

cdf.cl ose();

} catch (Exception e) {
Systemout.println (e);
}

158

PR
e

*/

159

D.3 Quick Start Test Program (C standard interface)

/**
*

* NSSDC/ CDF Quick Start Test Program (C standard interface).

*
**/

#i ncl ude <stdlib. h>
#i ncl ude <stdi 0. h>
#i ncl ude <string. h>

#i ncl ude "cdf. h"

#i f defined(vns)

#i ncl ude <ssdef >

#define EXIT _SUCCESS SS$ NORMAL
#define EXIT FAILURE SS$ ABORT
#el se

#define EXIT SUCCESS O

#define EXIT_FAl LURE 1

#endi f

/**

* | ncreased stack size for Borland C on | BM PC.

**/

#i f defi ned(BORLANDC)
extern unsigned _stklen = 12000u;
#endi f

/**

* Macr os/ pr ot ot ypes.

**/

#defi ne N _DI M5 2
#define DI M O_SI ZE 2
#define DIM 1_SI ZE 3

voi d Qui t CDF PROTQARGs((CDFstatus status, char *where, CDFid id));
voi d Quit EPOCH PROTOARGs((char *where));

/**

* Main.

**/

int min () {

CDFi d id;

CDFst at us st at us;

i nt di mn;

static |ong encodi ng = NETWORK_ENCODI NG,

static | ong act ual _encodi ng = NETWORK_ENCODI NG,
static | ong majority = ROW MAJOR;

static | ong nunDi ns = N_DI M5;

static |ong dinSizes[NDIMS] = { DOMO_SIZE, DIM 1_SI ZE };
static | ong var Dat aType = { CDF_INT2 };

| ong var Dat aType_out ;

static | ong var Nuntl ements = { 1 };

| ong var Nuntl enents_out ;

| ong var Num out ;

static short varValues[DOIMO_SIZE][DIM 1_SI ZE] = {{1,2,3},{4,5,6}};
| ong i ndi ces[N_DI M5] ;

static | ong recNum={ 0 };

short var Val ue_out ;

160

static | ong recStart = { 0 };
static | ong recCount = 11},
static | ong recilnterval = { 1 };
static |ong counts[N.DIM5] = { DOMO_SIZE, DIM1_SIZE };
static |l ong interval SINDIM5] ={ 1, 1 };
short varBuffer_out[D MO_SI Zﬂ [DIM 1 Sl ZE];
| ong attrNum out;
static |l ong entryNum = { 2 };
| ong maxEntry_ out;
static |ong attrScope = { GLOBAL_SCOPE };
| ong attr Scope_out;
static | ong attrDataType = { CDF_INT2 };
| ong attrDataType_out;
static | ong attrNunkl enents = { 1 };
| ong attrNunEl ements_out;
static short attrvValue = { 1 };
short attrVal ue_out;
| ong encodi ng_out ;
| ong maj ority _out;
| ong nunDi ns_out ;
| ong di nSi zes_out [N_DI M5]
| ong maxRec_out;
| ong nunVar s_out ;
| ong numittrs_out;
| ong versi on_out;
| ong rel ease_out;
i nt x0, x1, Xx;
static | ong var RecVari ance = { VARY };
| ong var RecVari ance_out ;
static | ong var Di mvari ances[N.DI M5] = { VARY, VARY };
| ong var Di nVari ances_out [N_DI M5]
static char var Name[] = "VARL";
static char new var Nane[] = "VAR2";
char var Nane_out [CDF_VAR _NAME LEN+1];
static char attrName[] = "ATTRL";
static char new attrNane[] = "ATTR2";
char attrName_out [CDF_ATTR_NAME_LEN] ;
char CopyRi ght Text [CDF_COPYRI GHT LEN+L
char error Text [CDF_ERRTEXT LEN+1];
| ong year = 1994;
| ong nonth = 10;
| ong day = 13;
| ong hour = 12;
| ong m nute = 0;
| ong second = O;
| ong msec = O;
| ong year Qut, nonthQut, dayQut,
hour Qut, minuteCut, secondCut, msecCut;
doubl e epoch, epochQut;
char epStri ng[EPOCH_ STRI NG 5 LEN+1] ;
char epSt ri ngl[EPOCH1_STRI NG LEN+L
char epSt ri ng2[EPOCH2_STRI NG _LEN+1] ;
char epSt ri ng3[EPOCH3_STRI NG_LEN+1] ;
static char epStringTrue[EPOCH_STRI NG LEN+1] = "13-Cct-1994 12:00: 00. 000";
static char epSt ri nglTrue[EPOCHL_STRI NG LEN+1] = "19941013. 5000000";
static char epSt ri ng2Tr ue[EPOCH2_STRI NG LEN+1] = "19941013120000";
static char epSt ri ng3Tr ue[EPOCH3_STRI NG_LEN+1] =" 1994- 10- 13T12: 00: 00. 000Z";

/**

* Display title.

161

**/

printf ("Testing Standard/C interface...\n");

/**

* Create CDF.

**/

status = CDFcreate ("TEST", nunDi ns, dinGizes, encoding, nmajority, & d);
if (status < CDF_CK) {
if (status == CDF_EXI STS)

status = CDFopen ("TEST", & d);
if (status < CDF_OK) QuitCDF (status, "1.0", id);
status = CDFdel ete (id);
if (status < CDF_OK) QuitCDF (status, "1.1", id);
status = CDFcreate ("TEST", nunDi ns, dintizes, encoding, majority, & d);
if (status < CDF_OK) QuitCDF (status, "1.2", id);

el se
QuitCDF (status, "1.3", id);

/**

. .
Create vari abl e.
**/

status = CDFvarCreate (id, varNane, varDataType, varNunkEl enents,

_ var RecVariance, varD nVariances, &arNum.out);

if (status < CDF_OK) QuitCDF (status, "2.0", id);
/**

* (Cl ose CDF.

**/

status = CDFcl ose (id);
if (status < CDF_OK) QuitCDF (status, "3.0", id);

/**

* Reopen CDF.

**/

status = CDFopen ("TEST", & d);
if (status < CDF_OK) QuitCDF (status, "4.0", id);

/**

* Del ete CDF.

**/

status = CDFdel ete (id); _
if (status < CDF_OK) QuitCDF (status, "5.0", id);
/**

* Create CDF again (previous delete will allow this).

**/

status = CDFcreate ("TEST", nunDi ns, dinftizes, encoding, majority, & d);
if (status < CDF_OK) QuitCDF (status, "6.0", id);

/**

. .
Create vari abl e.
**/

status = CDFvarCreate (id, varNane, varDataType, varNunkEl enents,
var RecVari ance, varDi nVariances, &varNumout);

162

if (status < CDF_OK) QuitCDF (status, "7.0", id);

/**

* PUT to vari abl e.

**/

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 < DM1 SIZE, x1++) {
i ndi ces[0] = xO0;
i ndi ces[1] = x1;
status = CDFvarPut (id, CDFvarNun{id, varNanme), recNum i ndices,
&var Val ues[x0] [x1]);
if (status < CDF_OK) QuitCDF (status, "8.0", id);

/**
* GET fromthe vari abl e.

**/

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 <D M1 SIZE, x1++) {
i ndi ces[0] = xO0;
i ndi ces[1] = x1;
status = CDFvarGet (id, CDFvarNun{id, varNane), recNum i ndices,
&var Val ue_out) ;
if (status < CDF_OK) QuitCDF (status, "9.0", id);
if (varVvalue out != varValues[x0][x1]) QuitCDF (status, "9.1", id);
}

/**

* HyperPUT to the variable.

**/

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 < DM1 _SIZE, x1++)

var Val ues[x0] [x1] = -var Val ues[x0] [x1];
i ndi ces[0] = O;
i ndi ces[1] = O;

status = CDFvar Hyper Put (id, CDFvarNun(id, varNanme), recStart, recCount,
reclnterval, indices, counts, intervals, varValues);
if (status < CDF_OK) QuitCDF (status, "10.0", id);

/**

* Hyper GET from vari abl e.

**/

status = CDFvar HyperGet (id, CDFvarNun(id, varNane), recStart, recCount,
reclnterval, indices, counts, intervals,
var Buf fer _out);

if (status < CDF_OK) QuitCDF (status, "11.0", id);

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 < DM1 SIZE, x1++)
i f (var Buf fer_out[x0] [x1] I = var Val ues[x0] [x1]) Qui t CDF
(status,"11.1",id);

/**

. .
Create attribue.
**/

status = CDFattrCreate (id, attrName, attrScope, &attrNum out);
if (status < CDF_OK) QuitCDF (status, "12.0", id);

163

/**

* PUT to attribute.

**/

status = CDFattrPut (id, CDFattrNunm(id,attrNane), entryNum attrDataType,
attrNurmEl enents, &attrVal ue);
if (status < CDF_OK) QuitCDF (status, "13.0", id);

/**

* GET fromattribute.

**/

status = CDFattrGet (id, CDFattrNum(id,attrNane), entryNum &attrVal ue_out);
if (status < CDF_OK) QuitCDF (status, "14.0", id);

/**

* Get CDF docunentation.

**/

status = CDFdoc (id, &version_out, &release out, CopyRi ghtText);
if (status < CDF_OK) QuitCDF (status, "15.0", id);

/**

* I nquire CDF.

**/

status = CDFinquire (id, &unDi ms_out, dinGizes _out, &encoding out,
&majority_out, &maxRec_out, &nunVars_out, &umAttrs_out);
if (status < CDF_OK) QuitCDF (status, "16.0", id);

if (numDinms_out != nunDins) QuitCDF (status, "16.1", id);

for (x = 0; x < ND M; x++)

if (dinGizes out[x] != dintizes[x]) QitCDF (status, "16.2", id);
(encodi ng_out != actual _encodi ng) QitCDF (status, "16.3", id);
(majority out !'= mpjority) QuitCDF (status, "16.4", id);
(maxRec_out !'= 0) QitCDF (status, "16.5", id);

(nunmvars_out !'= 1) QuitCDF (status, "16.6", id);

(numAttrs out !'= 1) QitCDF (status, "16.7", id);

i f
if =
if 0
i f
if

/**

. .
Renanme vari abl e.
**/

status = CDFvarRenane (id, CDFvarNun{id, varNane), new var Nane);
if (status < CDF_OK) QitCDF (status, "17.0", id);

/**

* Inquire variable.
**/

status = CDFvarlnquire (id, CDFvarNum(id, new varNanme), varName_out,
&var Dat aType_out, &var NunEl ements_out ,
&ar RecVari ance_out, varDi mvari ances_out);

if (status < CDF_OK) QuitCDF (status, "18.0", id);

if (strcnp(varNanme_out, new varNanme) !'= 0) QitCDF (status, "18.1", id);
if (varDataType out != varDataType) QuitCDF (status, "18.2", id);

i f (varNunEl enents_out != varNunEl ements) QuitCDF (status, "18.3", id);
if (varRecVariance out != varRecVariance) QitCDF (status, "18.4", id);

for (dimn = 0; dimn < nunDi ns; di mn++)
if (varDi mvariances out[dimn] != varD nVariances[dimn])
Qui t CDF (status, "18.4", id);

164

/**

. .
Cl ose vari abl e.
**/

status = CDFvarCl ose (id, CDFvarNum(id, new varNane));
if (status < CDF_OK) QuitCDF (status, "19.0", id);
/**

. .
Rename attribute.
**/

status = CDFattrRename (id, CDFattrNum(id, attrNane), new attrNane);
if (status < CDF_OK) QuitCDF (status, "20.0", id);
/**

* lnquire attribute.

**/

status = CDFattrlinquire (id, CDFattrNun(id, new attrNane), attrNane_out,
&attrScope_out, &axEntry out);
if (status < CDF_OK) QuitCDF (status, "22.0", id);

if (strcnp(attrName_out,new attrNane) !'= 0) QitCDF (status, "22.1", id);

if (attrScope_out != attrScope) QitCDF (status, "22.2", id);

if (maxEntry out !'= entryNum QuitCDF (status, "22.3", id);
/**

* lnquire attribute entry.

**/

status = CDFattrEntrylnquire (id, CDFattrNun(id, new attrNane), entryNum
&attrDat aType_out, &attrNunkl enents_out);
if (status < CDF_OK) QuitCDF (status, "23.0", id);

if (attrDataType_out != attrDataType) QuitCDF (status, "23.1", id);
if (attrNunEl ements_out != attrNunkEl ements) QuitCDF (status, "23.1", id);

/**

*
Get error text.
**/

CDFerror (CDF_OK, errorText);

/**

* Cl ose CDF.

**/

status = CDFcl ose (id);
if (status < CDF_OK) QuitCDF (status, "24.0", id);

/**

* Test EPOCH routi nes.

**/

epoch = comput eEPOCCH (year, nmonth, day, hour, nminute, second, nsec);

encodeEPCCH (epoch, epString);
if (strcnp(epString, epStringTrue)) QuitEPOCH ("30.0");

epochQut = parseEPOCH (epString);
if (epochQut != epoch) QuitEPOCH ("31.1");

encodeEPCCHL (epoch, epStringl);

165

if (strcnp(epStringl, epStringlTrue)) QuitEPOCH ("30.2");

epochCut

if

encodeEPOCH2 (epoch,

= parseEPOCHL (epStringl);

)1
(epochCQut !'= epoch) QuitEPOCH ("31.3");

epString2);

if (strcnp(epString2,epString2True)) QuitEPOCH ("30.4");

epochQut

if

encodeEPOCH3 (epoch,

= parseEPOCH2 (epString2);

)1
(epochCQut !'= epoch) QuitEPOCH ("31.5");

epString3);

if (strcnp(epString3,epString3True)) QuitEPOCH ("30.6");

epochQut = parseEPOCH3 (epString3);

if (epochQut != epoch) QuitEPOCH ("31.7");

EPOCHbr eakdown (epoch, &yearQut, &nonthQut,
&secondQut, &mrsecQut);

if (yearQut != year) QuitEPOCH ("32.1");

if (monthQut !'= nonth) QuitEPOCH ("32.2");

if (dayQut !'= day) QuitEPOCH ("32.3");

if (hourQut != hour) QuitEPOCH ("32.4");

if (mnuteQut !'= minute) QuitEPOCH ("32.5")

if (secondQut != second) QuitEPOCH ("32.6")

if (msecQut !'= nsec) QuitEPOCCH ("32.7");

&dayQut, &hourQut, &m nuteCut,

/**

*

Successful compl eti on.

**/

return EXI T_SUCCESS ;

}

/**

*

Qui t CDF.

**/

voi d QuitCDF (status,

where, id)

CDFst at us st at us;

char *where;
CDFid id;
{

}

char text[CDF_STATUSTEXT LEN+1];
printf ("Aborting at %...\n", where);
if (status < CDF_CK)

CDFerror (status, text);

printf ("%\n", text);

CDFcl ose (id);
printf ("...test aborted.\n");
exit (EXIT_FAILURE);

/**

*

Qui t EPOCH.

**/

voi d Quit EPOCH (where)

char

}

*wher e;

printf ("Aborting at
exit (EXI T_FAILURE);

166

%...test aborted.\n",

wher e) ;

D.4 Quick Start Test Program (C internal interface)

EE R I R O I R O I R I O I I R R R I R R I I I R R R I R R I R R I R R R O R O R

NSSDC/ CDF Quick Start Test Program (C internal interface).

This programis an CDF internal interface version of the standard
interface programin this appendi x.

/
*
*
*
*
*
*
*

***/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>

#i ncl ude "cdf. h"

#i f defined(vns)

#i ncl ude <ssdef >

#def i ne EXI T_SUCCESS SS$ NORMAL
#def i ne EXI T_FAI LURE SS$ ABORT
#el se

#def i ne EXI T_SUCCESS 0

#def i ne EXI T_FAI LURE 1

#endi f

/**

* | ncreased stack size for Borland C on | BM PC.

**/

#i f defi ned(BORLANDC)
extern unsigned _stklen = 12000u;
#endi f

/**

* Macr os/ pr ot ot ypes.

**/

#defi ne N _DI M5
#define DIMO_SI ZE
#define DIM 1_SI ZE

#defi ne zN_DI Msa
#define zDIM 0_SI ZEa
#def i ne zNUM _ELEMSa

[ocN el) WNN

voi d Qui t CDF PROTOARGs((char *where, CDFstatus status));

/**

* Main.

**/

int min () {

CDFi d i d;

CDFst at us st at us;

int dimn;

static | ong encodi ng = NETWORK ENCODI NG,

static | ong actual _encodi ng = NETWORK_ENCODI NG

static long majority = ROW MAJOR;

static long nunDins = N DI M5

static long dinSizesfNDIMS] = { DIMO_SIZE, DIM1_SIZE };
static | ong zNunDi nsA = zN DI M3a;

static |long zDi nSi zesA[zN DIMsa] = { zDIM O_SI ZEa };
static | ong varlDataType = { CDF_INT2 };

167

static | ong var1lDat aTypeNew = { CDF_UI NT2 };

static |ong var2DataType = { CDF_REAL4 };

static |long zVar AdataType = { CDF_CHAR };

static | ong zVar Adat aTypeNew = { CDF_UCHAR };

| ong var 1Dat aType_out, var 2Dat aType_out, zVarAdataType_out;
static | ong var 1Nuntl enents = { 11};

static | ong var 1NunEl enentsNew = { 1 };

static | ong var2Nunkl enents = { 113,

static |l ong zVar Anuntl enments = { zNUM ELEMsa };

static | ong zVar Anunel ement sNew = { zNUM_ ELEMSa };

| ong var 1NunEl enent s_out, var 2NunEl enents_out, zVar Anuntl ements_out ;

| ong var 1Num out, var2Num out, zVarAnum out, var Num out1l, varNum out 2;
static short var1val ues[DIM O_SI ZE][DIM 1_ SIZE] = {{1, 2, 3} {4, 5, 6}}
static float var2Values[DIMO_SIZE][DIM 1_SI ZE] = {{1., 2. 3 1, {4 ,6.11};

static char zVarAval ues[zDI M 0_SI ZEa] [zZNUM ELEMsa] = {
"1

L T R e A A
{r22,72,"2,"2","2","2,"2","2"},
{r,'3,"'3,"'3,"'3,"3,"'3,"3},
{4, 4,4 "4 "4 "4 "4 "4},
{*5,'5,"'5,"'5",'5" /"5 /"5 "5}

short var1lVal ue_out;

float var2Val ue out;

static char zVarAval ue_out [zNUM ELEMsa] ;

static long recNum={ 0 };

static long recStart = { 0 };

static |l ong recCount = 1},

static long reclnterval = { 1 };

| ong indices[N_DI M5];

static long counts[NDIMS] ={ DIMO_SIZE, DOM 1 SIZE };

—

static long intervalsfNDIMS] = { 1, 1 };
static long zRecNum= { 0 };

static long zRecStart = { 0 };

static long zRecCount = { 1 };

static long zReclnterval = { 1 };
| ong zl ndi cesAl zN DI Mza] ;

static | ong zCounts[zN_ DI MSa, a] = { zDIM O_SI ZEa };
static long zlntervalsINDM5] = { 1 };

short var1Buffer_out]| D MO _SIZE][DIM 1_SI ZE] ;
float var2Buffer_out[D 0 Sl ZE] [DI M_1_SI ZE] ;

char zVar Abuffer_out|[z Sl ZEa] [zZNUM ELEl\/Sa]

| ong attrNum out;

static long entryNum= { 2 };

| ong maxEntry_out;

static long attrScope = { GLOBAL_SCOPE };
static long attrScope2 = { VAR ABLE_ SCOPE 1
static long attrScope3 { VARI ABLE_SCOPE };
| ong attr Scope_out;

static |ong entryDataType = { CDF_INT2 };
static long entryDataTypeNew = { CDF_UI NT2 };
| ong entryDat aType_out;

static long entryNunElems = { 1 };

| ong entryNurEl ens_out ;

static short entryValue = { 1 };

short entryVal ue_out;

| ong encodi ng_out ;

| ong majority out;

| ong nunDi ns_out ;

| ong di n5i zes_out [N_DI M5] ;

| ong zNunDi nsA out;

| ong zDi nSi zesA out[zN DI Msa] ;

| ong nmaxRec_out;

| ong numAttrs_out;

| ong version_out;

168

| ong rel ease_out;
| ong increnent _out;
char subi ncrenment out;
int i, x0, x1, x;
static | ong var1lRecVariance = { VARY };
static | ong var1lRecVari anceNew = { NOVARY };
static | ong var2RecVariance = { VARY };
static |l ong zVarArecVariance = { VARY };
static |l ong zVarArecVari anceNew = { NOVARY };
| ong var 1RecVari ance_out, var2RecVariance_out, zVarArecVariance_out;
static | ong var1Di nvari ances[N DI M5] = { VARY VARY };
static | ong var 1D mvari ancesNew N _DI I\/S] = { NOVARY, NOVARY };
static | ong var 2D nVari ances[N D M5] = { VARY, VARY 1};
static | ong zVarAdi nVari ances[zN DI Msa] = { VARY };
static | ong zVarAdi nVari ancesNew zN DI Msa] = { NOVARY };
| ong var 1Di mVari ances_out [N_DI M5],
var 2Di nvari ances_out [N_DI M§] ,
zVar Adi nvar i ances_out [ZzN_DI I\/Sa]

stati
char

char new zVar Anane[] = "zVARa2";

ar IName_out [CDF_VAR_NAME_LEN+1],
var 2Nane_out [CDF_VAR _NAME_LEN+1],
zVar Aname_out [CDF_VAR_NAME LEN+1]

static char varlNane[] = "VARIa";
static char var2Name[] = "VAR2a";
static char zVarAnane[] = "zVARal";
static char new var1Nane[] = "VARLb";
static char new var2Nane[] = "VAR2b";
C
%

static char attrNane[] = "ATTRL";
static char attrName2[] = "ATTR2";
static char attrNanme3[] = "ATTR3";
static char new attrNane[] = "ATTRla";

char attrName_out [CDF_ATTR _NAVE_LEN];
char CopyRi ght Text [CDF_COPYRI GHT LEN+L
char error Text [CDF_STATUSTEXT LEN+1];
static char rEntryValue = { 4 };
char rEntryVval ueCut;
static double zEntryVaIue ={ 4.0 };
doubl e zEntryVal ueCut ;
| ong nunRvars, nuniZvars, maxGentry, numGentries, nmaxRentry, nunRentri es,
maxZentry, nun¥entries, nuntattrs, nunVattrs;
| ong cacheQut1l, cacheQut2, cacheQut 3;
static short padl = { -999 };
static float pad2 = { -8.0 };
static char pad3[zNUM_ ELENSa+1] = { MExEkkxxEn 1
short padlout;
fl oat pad2out;
static char pad30ut[zNUM ELENBa+1] ={" "}
static | ong bl ockingfactorl
static | ong bl ockingfactor?2 4,
static | ong bl ockingfactor3 5;
| ong bl ocki ngf act orQut 1, blocklngfactorCUtZ bl ocki ngf act or Qut 3;
long recStartQut, recCountQut, reclnterval Qut, recNunQut;
| ong |nd|cesCUt[CDF MAX_DI M5,
count sQut [CDF_MAX_DI M5] ,
i nt er val sQut [CDF_VAX DINS
int dim;
l ong entryNumQut 1, entryNunut2, entryNunQut 3;
| ong formatQut;
| ong maxAl | ocQut 1, maxAl |l ocQut 2, maxAll ocQut 3;
| ong maxRecQut 1, maxRecQut2, naxRecQut 3, maxRecQut;
 ong nl ndexRecsCQut 1, nlndexRecsCut2, nlndexRecsCut 3;
| ong nl ndexEntriesQutl, nlndexEntriesQut2, nlndexEntriesCut3;
static long all ocRecsl { 10 };
static long allocRecs2 = { 15 };

169

static long allocRecs3 ={ 8 };

static long nRvars = { 2 };

static | ong rVath[Z] ={ 1, 0};

static char rVarsRecBuffer[DIMO_SIZE][DIM 1_SIZE][6] = {
{{o0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0, 0} },
{{o0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0, 0}}

b

static char rVarsRecBufferCQut[DIMO_SIZE][D M 1 Sl ZE] [6] ;

static long nZvars = { 1 };

static long zVarNs[1] = 0 };

static char zVarsRecBuffer[zDI M O_SI ZEa] [zNUM ELEMBa] = {
{"%, "%, "%, "%, "%, "%, %, %},

{"%, "%, "%, "%, "%, "%, %, %},

{"%," "%, "%, "%, "%, "%, %, %},

{"%, "%, "%, "%, "%, "%, %, %},
{"%,"%, "%, "%, "%, "%, %, %}

3
static char zVarsRecBufferQut[zDI M 0_SI ZEa] [zNUM ELEMSa] ;

/**

* Display title.

**/

printf ("Testing Internal/C interface...\n");

/**

* Create CDF.

**/

status = CDFlib (CREATE , CDF_, "TEST", nunDins, dinSizes, & d,
PUT_, CDF_ ENCODI NG, encoding,
CDF_MAJORITY_, majority,
CDF_FORMAT_, MULTI _FILE,
NULL) ;

if (status < CDF - K) {
i f (status CDF_EXI STS)
status = CDFI|b (OPEN_, CDF_, "TEST", &id,
NULL_);
if (status < CDF_O() QuitCDF ("1.0", status);

status = CDFlib (DELETE , CDF_,
NULL_);
if (status < CDF_OK) QuitCDF ("1.1", status);

status = CDFlib (CREATE_, CDF_, "TEST", nunDins, dinSizes, & d,
PUT_, CDF ENCODI NG , encodi ng,
CDF_MAJORI TY_, maj ority,
CDF_FORMAT _, MULTI _FI LE,
NULL_) ;
if (status < CDF_OK) QitCDF ("1.2", status);
}
el se
QuitCDF ("1.3", status);

/**

* Create variables and set/confirm cache sizes, etc.
**/

status = CDFlib (CREATE , rVAR , varlNane, varlDataType, var1NunEl enents,
var 1RecVari ance, var1Di nmvari ances,
&var 1Num out ,
NULL) ;

170

if (status < CDF_OK) QuitCDF ("2.0aa", status);

status = CDFlib (PUT_, rVAR PADVALUE , &padil,
NULL_);

if (status < CDF_OK) QuitCDF ("2.0ab", status);

status = CDFlib (CREATE , rVAR , var2Nane, var2DataType, var 2NunEl enents,
var 2RecVari ance, var2Di mvari ances,
&var 2Num out ,
PUT_, rVAR PADVALUE , &pad2,
NULL) ;
if (status < CDF_OK) QuitCDF ("2.0b", status);

status = CDFlib (CREATE , zVAR , zVarAnane, zVarAdataType, zVarAnuntl enents,
zZNunmDi nsA, zDi nfSi zesA, zVar ArecVari ance,
zVar Adi nVvari ances, &zVar Anum out,
PUT , zVAR PADVALUE , pad3,
NULL_) ;
if (status < CDF_OK) QuitCDF ("2.0c", status);

status = CDFlib (SELECT_, rVARs_CACHESI ZE , 5L,
zVARs_CACHESI ZE_, 6L,
NULL_) ;
if (status < CDF_OK) QuitCDF ("2.0d", status);

status = CDFlib (SELECT_, CDF_, id,
rVAR , OL,

CONFI RM_, rVAR _CACHESI ZE_, &cacheQut 1,
GET_, rVAR PADVALUE , &padlout,
SELECT , rVAR, 1L,
CONFI RM , rVAR CACHESI ZE , &cacheCQut 2,
GET_, rVAR PADVALUE , &pad2out,
SELECT , zVAR_, OL,
CONFI RM , zVAR CACHESI ZE , &cacheCQut 3,
GET_, zVAR PADVALUE , pad3out,
NULL) ;

if (status < CDF_OK) QuitCDF ("2a.0", status);

(cacheCQutl !'=5) QuitCDF ("2a.1", status);
(cacheQut2 !'=5) QitCDF ("2a.2", status);
(cacheCQut3 !'= 6) QuitCDF ("2a.3", status);

(padlout !'= padl) QuitCDF ("2a.3a", status);
(pad2out != pad2) QuitCDF ("2a.3b", status);

i
i
i
@
i
i f (strcnp(pad3out, pad3)) QuitCDF ("2a.3c", status);

— —h —h —h —h —h

status = CDFlib (SELECT , rVAR , OL,
r VAR_CACHESI ZE_, 4L,
zVAR , OL,
zVAR_CACHESI ZE_, 8L,
NULL_);
if (status < CDF_OK) QuitCDF ("2a.4", status);

status = CDFlib (SELECT_, rVAR, OL,
CONFI RM_, rVAR CACHESI ZE_, &cacheQut1,
SELECT_, rVAR, 1L,
CONFI RM_, rVAR CACHESI ZE_, &cacheQut 2,
SELECT_, zVAR_, OL,
CONFI RM , zVAR CACHESI ZE , &cacheCQut 3,
NULL_);

if (status < CDF_OK) QuitCDF ("2a.0", status);

if (cacheQutl !
if (cacheCQut2 !
if (cacheCQut3 !

4) QuitCDF ("2a.1", status);
5) QuitCDF ("2a.2", status);
8) QitCDF ("2a.3", status);

171

/**

* Modify vari abl es.

**/

status = CDFlib (SELECT_, rVAR, OL,
PUT , rVAR DATASPEC , var 1Dat aTypeNew, var 1NunEl enment sNew,
r VAR _RECVARY , var 1RecVari anceNew,
r VAR DI WARYS , var 1Di nVari ancesNew,
r VAR | NI TI ALRECS , 1L,
SELECT , zVAR , OL,
PUT_, zVAR DATASPEC , zVar Adat aTypeNew, zVar AnunEl ement sNew,
zZVAR _RECVARY , zVar ArecVari anceNew,
zZVAR_DI WARYS_, zVar Adi nVar i ancesNew,
zZVAR | NI TI ALRECS , 1L,
NULL_) ;
if (status < CDF_OK) QuitCDF ("2b.0", status);

/**

* Cl ose CDF.

**/

status = CDFlib (CLOSE , CDF_,
NULL) ;
if (status < CDF_OK) QuitCDF ("3.0", status);

/**

* Reopen CDF.

**/

status = CDFlib (OPEN_, CDF_, "TEST", &id,
SELECT_, CDF_DECODI NG_, HOST_DECODI NG
NULL_);

if (status < CDF_OK) QuitCDF ("4.0", status);

/**

* Del ete CDF.

**/

status = CDFlib (DELETE , CDF_,
NULL_);
if (status < CDF_OK) QuitCDF ("5.0", status);

/**

* Create CDF again (previous delete will allow this).

**/

status = CDFlib (CREATE_, CDF_, "TEST", nunDins, dintizes, & d,
PUT_, CDF_ENCODI NG , encoding,
COF_MAJORITY_, nmjority,
CDF_FORVMAT_, SINGLE_FI LE,
SELECT_, CDF_DECODI NG_, HOST_DECODI NG
NULL_);
if (status < CDF_OK) QuitCDF ("6.0", status);

/**

* Create vari abl es.

**/

status = CDFlib (CREATE , rVAR_, varlNane, varlDataType, var1NunEl enents,
var 1RecVari ance, var 1D nVari ances,
&var 1Num out ,
PUT_, rVAR ALLOCATERECS , all ocRecsl,
r VAR_BLOCKI NGFACTOR , bl ocki ngfactorl,
NULL) ;

172

if (status < CDF_OK) QuitCDF ("7.0a", status);

status = CDFlib (CREATE , rVAR , var2Nane, var2DataType, var2NunEl enents,
var 2RecVari ance, var2Di mvari ances,
&var 2Num out ,
PUT , rVAR ALLCCATERECS , all ocRecs2,
r VAR_BLOCKI NGFACTOR_, bl ocki ngf act or 2,
NULL_) ;
if (status < CDF_OK) QuitCDF ("7.0b", status);

status = CDFlib (CREATE , zVAR_, zVarAnane, zVarAdataType, zVar Anuntl enents,
zNunDi nsA, zDi nSi zesA, zVar ArecVari ance,
zVar Adi nvari ances, &zVar Anum out,
PUT_, zVAR ALLCCATERECS , all ocRecs3,
zVAR BLOCKI NGFACTOR , bl ocki ngf act or 3,
NULL) ;
if (status < CDF_OK) QuitCDF ("7.0c", status);

/**
* PUT to vari abl es.

**/

status = CDFlib (SELECT , rVARs_RECNUMBER , recNum
NULL_);
if (status < CDF_OK) QuitCDF ("8.0", status);

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 <D M1 SIZE, x1++) {

i ndi ces[0] = xO0;

i ndi ces[1] = x1;

status = CDFlib (SELECT , rVARs DI M NDI CES , indices,

r VAR , var 1Num out,

PUT , rVAR DATA , &var1Val ues[x0][x1],
SELECT_, rVAR_, var2Num out,
PUT_, rVAR DATA , &var2Val ues[x0][x1],
NULL_) ;

if (status < CDF_OK) QuitCDF ("8.1", status);

status = CDFlib (SELECT , zVAR , zVar Anum out,
zVAR_RECNUMBER , zRecNum

NULL_);
if (status < CDF_OK) QuitCDF ("8.0z", status);

for (x0 = 0; x0 < zDIM O_SI ZEa; x0++) {
zI ndi cesAl 0] = x0;
status = CDFlib (SELECT_, zVAR DI M NDI CES , zlndi cesA,
PUT , zVAR DATA , zVarAval ues[x0],
NULL) ;
if (status < CDF_OK) QuitCDF ("8.1z", status);

/**

. .
CET fromthe vari abl es.
**/

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 <D M1 SIZE, x1++) {

i ndi ces[0] = xO0;

i ndi ces[1] = x1;

status = CDFlib (SELECT , rVARs DI M NDI CES , indices,

r VAR , var 1Num out,

GET_, rVAR DATA , &varlVal ue_out,
SELECT_, rVAR_, var2Numout,

173

GET_, rVAR DATA , &var2Val ue_out,
NULL) ;
if (status < CDF_OK) QuitCDF ("9.0", status);

if (varlVal ue_out !
if (var2Val ue_out !

var 1Val ues[x0] [x1]) QuitCDF ("9.1", status);
var 2Val ues[x0] [x1]) QuitCDF ("9.2", status);

}

for (x0 = 0; x0 < zDIM O_SI ZEa; x0++) {
zI ndi cesAl 0] = xO0;
status = CDFlib (SELECT_, zVAR DI M NDI CES , zlndi cesA,
GET_, zVAR DATA , zVarAval ue_out,
NULL) ;
if (status < CDF_OK) QuitCDF ("9.1z", status);

for (i =0; i < zNUMELEMSa; i++)
if (zVarAvalue_ out[i] !'= zVarAval ues[x0][i]) QitCDF ("9.2z", status);
}

}

/**

* HyperPUT to the variables.

**/

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 = 0; x1 < DM 1 _SIZE, x1++)

var 1Val ues[x0] [x1] = -var 1Val ues[x0] [x1] ;
var 2Val ues[x0] [x1] = -var2Val ues[x0] [x1] ;
}
i ndi ces[0] = O;
i ndi ces[1] = O;

status = CDFlib (SELECT , rVARs RECNUMBER , recStart,
r VARs _RECCOUNT _, recCount,
rVARs RECI NTERVAL , reclnterval,
rVARs DI M NDI CES , indices,
r VARs DI MCOUNTS , counts,
rVARs DI M NTERVALS , intervals,
rVAR_, var 1Num out,
PUT_, rVAR _HYPERDATA , var 1Val ues,
SELECT _, rVAR_, var2Num out,
PUT_, rVAR _HYPERDATA , var2Val ues,
NULL_) ;
if (status < CDF_OK) QuitCDF ("10.0", status);

for (x0 = 0; x0 < zDI M O_SI ZEa; x0++)
for (i =0; i < zNUMELEMsa; i++) {
zVar Aval ues[x0] [i] ++;
}

zl ndi cesA[0] = O;

status = CDFlib (SELECT , zVAR RECNUMBER , zRecStart,
zVAR_RECCOUNT_, zRecCount,
zZVAR RECI NTERVAL , zReclnterval,
zVAR DI M NDI CES , zl ndi cesA,
zVAR DI MCOUNTS_, zCounts,
zVAR DI M NTERVALS , zlntervals,
PUT , zVAR HYPERDATA , zVarAval ues,
NULL) ;
if (status < CDF_OK) QuitCDF ("10.0z", status);

/**

174

* Hyper GET from vari abl es.
**/

status = CDFlib (SELECT , rVARs RECNUMBER , recStart,
r VARs _RECCOUNT_, recCount,
rVARs RECI NTERVAL , reclnterval,
rVARs DI M NDI CES , indices,
r VARs_DI MCOUNTS , counts,
rVARs DI M NTERVALS , intervals,
rVAR_, var 1Num out,
CET_, rVAR HYPERDATA , var 1Buffer_out,
SELECT _, rVAR_, var2Num out,
GET_, r VAR _HYPERDATA , var2Buffer_out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("11.0", status);

for (x0 = 0; x0 < DIMO_SI ZE; x0++)
for (x1 =0; x1 < DM1 SIZE, x1++)

if (var1Buffer_out[x0][x1] != var1Val ues[x0][x1])
QuitCDF ("11.1", status);
if (var2Buffer out[x0][x1] !'= var2Val ues[x0][x1])

QuitCDF ("11.2", status);

status = CDFlib (GET_, zVAR HYPERDATA , zVar Abuffer_out,
NULL) ;
if (status < CDF_OK) QuitCDF ("11.0z", status);

for (x0 = 0; x0 < zDI M O_SI ZEa; x0++)
for (i =0; i < zNUMELEMsa; i++)
if (zVarAbuffer_out[x0][i] != zVarAval ues[x0][i])
QuitCDF ("11.1z", status);

/**

* Confirm hyper paranmeters for a zVariable.
**/

status = CDFlib (CONFIRM, zVAR RECNUMBER , &recStartQut,
zVAR _RECCOUNT_, &recCount Qut,
zVAR _RECI NTERVAL , &reclnterval Qut,
zVAR DI M NDI CES , indicesQut,
zVAR DI MCOUNTS_, countsQut,
zVAR DI M NTERVALS , interval sCut,

NULL_) ;
if (status < CDF_OK) QuitCDF ("1l1la.0", status);

f (recStartQut !'= zRecStart) QuitCDF (

f (recCountQut != zRecCount) QuitCDF ("1la.2", status);

f (reclntervalQut !'= zReclnterval) QuitCDF ("11la.3", status);

or (dinN = 0; dimN < zN DI Msa; di m\++) {

if (indicesQut[dimN] !'= zIndicesAldinN]) QuitCDF ("1l1la.4", status);
f di
f

"1la. 1", status);

[
i
[
f

if (countsQut[dinmN] !'= zCounts[dim\]) QuitCDF ("1la.5", status);
(intervalsQut[dinmN] != zlnterval s[di) QuitCDF ("11a.6", status);

}

/**

* Set/confirm sequential access position for a zVariable (and read/wite a
* val ue).

**/

status = CDFlib (SELECT , zVAR SEQPCS , zRecStart, zlndicesA,
CGET_, zVAR SEQATA , zVarAval ue_out,
PUT_, zVAR SEQDATA , zVar Aval ue_out,

175

CONFI RM , zVAR SEQPOS , & ecNunfut, indicesQut,
NULL_);
if (status < CDF_OK) QuitCDF ("11b.0", status);

if (recNumQut !'= zRecStart) QuitCDF ("11b. 1", status);
if (indicesQut[0] != zlndicesA[0] + 2) QitCDF ("11b.2", status);

/**

. .
Create attributes.
**/

status = CDFlib (CREATE , ATTR_, attrNane, attrScope, &attrNum out,
ATTR_, attrNane2, attrScope2, &attrNum out,
ATTR_, attrNanme3, attrScope3, &attrNum out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("12.0", status);

/**

* PUT to attributes.

**/

status = CDFlib (SELECT , ATTR_, OL,
gENTRY_, entryNum
PUT _, gENTRY_DATA , entryDataType, entryNuntl emns,
&ent ryVal ue,
SELECT , ATTR,, 1L,
r ENTRY_NAME , var 2Nane,
PUT _, rENTRY_DATA , CDF_BYTE, 1L, &rEntryVal ue,
SELECT , ATTR, 2L,
zZENTRY_NANME_, zVar Anane,
PUT _, zENTRY_DATA , CDF_REALS8, 1L, &zEntryVal ue,
NULL_);
if (status < CDF_OK) QuitCDF ("13.0", status);

/**

.)
Confirmentry nunbers.
**/

status = CDFlib (CONFIRM, gENTRY_, &entryNunQutl,
rENTRY_, &entryNunQut 2,
ZENTRY_, &entryNunCut 3,
NULL_) ;
if (status < CDF_OK) QuitCDF ("13a.0", status);

if (entryNuntutl !
if (entryNunCut2 !
if (entryNunfut3 !

1) QuitCDF ("13a.1", status);
1) QuitCDF ("13a.2", status);
0) QuitCDF ("13a.3", status);

/**

* GET fromattributes.

**/

status = CDFlib (SELECT_, ATTR_, OL,
gENTRY_, entryNum
CONFI RM , CURgENTRY_EXI STENCE ,
GET_, gENTRY_DATA , &entryVal ue_out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("14.0.1", status);

status = CDFlib (SELECT , ATTR, 1L,
r ENTRY_, 1L,
CONFI RM_, CURr ENTRY_EXI STENCE ,
GET_, rENTRY_DATA , &rEntryVal ueCut,
NULL) ;

176

if (status < CDF_OK) QuitCDF ("14.0.2", status);

status = CDFlib (SELECT , ATTR, 2L,
ZENTRY_, OL,
CONFI RM_, CURzENTRY_EXI STENCE ,
CGET_, zENTRY_DATA , &zEntryVal ueCut,
NULL) ;
if (status < CDF_OK) QuitCDF ("14.0.3", status);

if (entryValue out != entryValue) QuitCDF ("14.1", status);
if (rEntryvalue != rEntryValueCut) QuitCDF ("14.2", status);
if (zEntryValue != zEntryValueQut) QuitCDF ("14.3", status);

/**

* Confirmexistence of variables/attributes/entries.
**/

status = CDFlib (CONFIRM , zVAR EXI STENCE , zVar Anane,
r VAR_EXI STENCE , var 1Nane,
ATTR_EXI STENCE , attr Nanme3,
NULL_) ;
if (status < CDF_OK) QuitCDF ("14a.0", status);

status = CDFlib (SELECT , ATTR_, OL,
CONFI RM , gENTRY_EXI STENCE , entryNum
SELECT , ATTR_, 1L,
CONFI RM_, rENTRY_EXI STENCE , 1L,
SELECT , ATTR, 2L,
CONFI RM_, zENTRY_EXI STENCE , OL,
NULL_);

if (status < CDF_OK) QuitCDF ("14a.1", status);

/**

* Get CDF docunentation.

**/

status = CDFlib (GET_, LIB VERSION , &version_out,
LI B RELEASE , &rel ease _out,
LI B | NCREMENT_, &i ncrenent _out,
LI B_subl NCREMENT_, &subi ncrenment _out,
LI B_COPYRI GHT_, CopyRi ght Text,
NULL_) ;
if (status < CDF_OK) QuitCDF ("15.0", status);

/**

* I nquire CDF.

**/

status = CDFlib (GET_, CDF_FORMAT , &formatQut,
rVARs NUMDI MS_, &nunDi ns_out,
r VARs DI M8l ZES , di nSi zes_out,
CDF_ENCODI NG , &encodi ng_out,
CDF_ MAJORITY_, &mejority_out,
r VARs _MAXREC , &maxRec_out,
CDF_NUM VARS , &nunRvars,
CDF_NUMzVARS , &nuniZvars,
CDF_NUMVATTRS , &numAttrs_out,

NULL) ;
if (status < CDF_OK) QuitCDF ("16.0", status);

if (formatQut !'= SINGLE FILE) QuitCDF ("16.10", status);
if (numDinms_out != nunDinms) QuitCDF ("16.1", status);
for (x = 0; x < ND M; x++)
if (dinGizes out[x] !'= dintizes[x]) QuitCDF ("16.2", status);

177

(encodi ng_out != actual _encodi ng) QitCDF ("16.3", status);
(majority out '= majority) QuitCDF ("16.4", status);
(maxRec_out !'= 0) QitCDF ("16.5", status);

(nunmRvars !'= 2) QuitCDF ("16.6", status);

(nunmzvars !'= 1) QuitCDF ("16.62z", status);

(numAttrs out !'=3) QitCDF ("16.7", status);

— —h —h —h —h —h

/**

.)
I nqui re nunbers.
**/

status = CDFlib (GET_, ATTR_NUMBER , attrNane3, &attrNum out,
r VAR_NUMBER , var2Nane, &varNum out 1,
zVAR _NUMBER , zVar Anane, &var Num out 2,
NULL_) ;
if (status < CDF_OK) QuitCDF ("16a.0", status);

if (attrNumout !
if (varNumoutl !
if (varNumout2 !

2) QuitCDF ("16a.1", status);
1) QuitCDF ("1l6a.2", status);
0) QuitCDF ("16a.3", status);

/**

* Renane vari abl es.

**/

status = CDFlib (SELECT_, rVAR NAME , var 1Name,
PUT_, rVAR _NAME_, new_var 1Nane,
NULL_);

if (status < CDF_OK) QuitCDF ("17.0a", status);

status = CDFlib (SELECT_, rVAR NAME , var2Nane,
PUT_, rVAR NAME , new var 2Nane,
NULL_) ;

if (status < CDF_OK) QuitCDF ("17.0b", status);

status = CDFlib (SELECT , zVAR NAME , zVar Anane,
PUT_, zVAR _NAME_, new_zVar Anane,
NULL_) ;

if (status < CDF_OK) QuitCDF ("17.0c", status);

/**

* Read/wite multiple variable data.
**/

status = CDFlib (SELECT_, rVARs_RECNUMBER_ , 2L,
PUT_, rVARs_ RECDATA , nRvars, rVarNs, rVarsRecBuffer,
SELECT , zVARs_RECNUMBER , 2L,
PUT _, zVARs RECDATA , nZzZvars, zVarNs, zVarsRecBuffer,
NULL) ;

if (status < CDF_OK) QuitCDF ("17.0d", status);

status = CDFlib (GET_, rVARs_RECDATA , nRvars, rVarNs, rVarsRecBufferQut,
CET_, zVARs_RECDATA , nZvars, zVarNs, zVarsRecBufferQut,
NULL_) ;

if (status < CDF_OK) QuitCDF ("17.0e", status);

i f (menmcnp(rVarsRecBufferQut, rVarsRecBuffer,

si zeof (rVarsRecBuffer))) QuitCDF ("17.0f", status);
i f (menmcnp(zVarsRecBuf f er Qut, zVar sRecBuf f er,

si zeof (zVarsRecBuffer))) QuitCDF ("17.0g", status);

/**

.) .
I nqui re vari abl es.
**/

178

status = CDFlib (SELECT , rVAR_, var1Num out,

—

— —h —h —h —h —h —h —h

CET_, rVAR _NAME , var 1Nane_out,
r VAR DATATYPE &var 1Dat aType_out,
r VAR_NUVELEMS , &var 1NunEl ement s_out ,
r VAR_RECVARY , &var 1RecVari ance_out,
r VAR DI WARYS , var 1Di nVari ances out
r VAR_BLOCKI NGFACT(R &bl ocki ngf act or Qut 1,
r VAR_MAXal | ocREC &maxAl | ocQut 1,
r VAR_VAXREC , &maxRec Qut 1,
r VAR nl NDEXREC(RDS &nl ndexRecsQut 1,
r VAR_nl NDEXENTRI ES_, &nl ndexEntri esQut 1,
CONFIRM_, rVAR_, &var 1Num_out ,
NULL_) ;
(status < CDF_OK) QuitCDF ("18.0a", status);

(strcmp(var 1Name_out, new var 1Name) !'= 0) QuitCDF ("18.11", status);
(var 1Dat aType_out != varlDataType) QuitCDF ("18.12", status);
(var INuntl errents_out != var 1Nuntl ements) QuitCDF ("18.13", status);
(var1RecVari ance_out != varlRecVariance) QuitCDF ("18.14", status);
(varINumout !'= OL) QuitCDF ("18.14a", status);
(bl ocki ngfactorQut1l != bl ockingfactorl) QuitCDF ("18.14b", status);
(maxAl locQutl + 1 !'= allocRecsl) QuitCDF ("18.14c", status);
(maxRecQutl !'= 2L) QuitCDF ("18.14d", status);

for (dimn = 0; dimn < nunD ns; di mn++)

}

if (var 1D| mvar i ances_out [di m_n] I'= var 1Di nvari ances[dimn]) {
Qui t CDF ("18.14", status);

status = CDFlib (SELECT_, rVAR_, var2Num out,

—

— —h —h —h —h —h —h —h

CET_, rVAR _NAME , var2Nane_out,
r VAR _DATATYPE_, &var 2Dat aType_out,
r VAR NUVELEMS , &var 2NunEl erment s_out
r VAR_RECVARY , &var2RecVari ance_out,
r VAR DI WARYS , var 2Di nVari ances out
r VAR_BLOCKI NGFACT(R &bl ocki ngf act or Qut 2,
r VAR_MAXal | ocREC , &maxAl | ocOut 2,
r VAR_MAXREC , &maxRecQut 2,
r VAR nl NDEXREC(RDS &nl ndexRecsQut 2,
r VAR_nl NDEXENTRI ES_, &nl ndexEnt ri esQut 2,
CONFIRM_, rVAR_, &var2Num_out ,
NULL_) ;
(status < CDF_OK) QuitCDF ("18.0b", status);

(strcmp(var 2Nanme_out , new _var2Name) !'= 0) QuitCDF ("18.21", status);
(var2Dat aType_out != var2DataType) QuitCDF ("18.22", status);
(var 2Nuntl erent s_out != var 2Nuntl ements) QuitCDF ("18.23", status);
(var2RecVari ance_out != var2RecVariance) QuitCDF ("18.24", status);
(var2Num out != 1L) QuitCDF ("18.24a", status);
(bl ocki ngfactorQut 2 ! = bl ocki ngf actor2) Qui t CDF ("18.24b", status);
(maxAl locQut2 + 1 !'= all ocRecs2) QuitCDF ("18.24c", status);
(maxRecQut2 !'= 2L) QuitCDF ("18.24d", status);

for (dimn = 0; dimn < nunDi ns; di mn++)

}

if (var2DinVariances out[dimn] != var2D nVariances[dimn]) {
Qui t CDF ("18.25", status);

status = CDFlib (SELECT_, zVAR , zVarAnum out,

CGET_, zVAR NAME_, zVarAnama_out,
zVAR_DATATYPE_, & Var Adat aType_out ,

179

zVAR _NUMELEMS , &zVar Anuntl ements_out,
zVAR _RECVARY , &zVar ArecVari ance_out,
zVAR DI M/ARYS_ zVar Adi nvari ances_out,
zZVAR _NUMDI M5, &zNunmDi nsA out,
zVAR DI MSI ZES , zDi nSi zesA out,
zVAR_BLOCKI NC-:FACTO? &bl ocki ngf act or Qut 3,
zVAR_MAXal | ocREC &maxAl | ocOut 3,
zVAR_MAXREC &maxRec Qut 3,
ZVAR _nl NDEXRECORDS , é&nl ndexRecsQut 3,
zZVAR_nl NDEXENTRI ES_, &nl ndexEntri esQut 3,
NULL_) ;
if (status < CDF_OK) QuitCDF ("18.0cl", status);

status = CDFlib (CONFIRM , zVAR , &zVar Anum out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("18.0c2", status);

(strcmp(zVvar Anane_out, new _zVar Anane) != 0) QuitCDF ("18.21z", status);
(zVar Adat aType_out != zVar Adat aType) QuitCDF ("18.22z", status);

(zVar Anuntl enent s_out !'= zVar AnunEl enents) Quit CDF (" 18. 23z", status);
(zVar ArecVari ance_out != zVarArecVariance) QuitCDF ("18.24z", status);
(zNunDi n8A out != zNunDi nsA) QuitCDF ("18.25z", status);

(zVar Anum out !'= OL) QuitCDF ("18.26z", status);

(bl ocki ngfactorQut3 ! = bl ocki ngfactor3) QuitCDF ("18.26z1", status);
(maxAllocQut3 + 1 !'= allocRecs3) QitCDF ("18.26z2", status);
(maxRecQut3 !'= 2L) QuitCDF ("18.26z3", status);

—h —h —h —h —h —h —h —h —h

r (dimn = 0; dimn < zNunDi nsA; di mn++)
if (zD nSi zesA out[dimn] !'= zDinSizesAldimn]) {
Qui t CDF ("18.27z", status);
}
|

f (zVar Adi mvari ances_out[di mn] != zVarAdi nVari ances[dimn]) {
Qui t CDF ("18.28z", status);
}
}

/**

* Renane attri bute.

**/

status = CDFlib (SELECT_, ATTR NAME_, attrNane,
PUT_, ATTR_NAME_, new_attr Nane,
NULL) ;

if (status < CDF_G() QuitCDF ("20.0", status);

/**

* lnquire attribute.

**/

status = CDFlib (GET_, ATTR _NAME , attrNanme_out,
ATTR_SCOPE _, &attrScope out,
ATTR_ MAXgENTRY &maxEntry_ out
CONFI RM, ATTR., &attrl\hm out,
NULL_) ;
if (status < CDF_O() QuitCDF ("22.0", status);

if (strcnp(attrName_out,new attrNane) !'= 0) QuitCDF ("22.1", status);
if (attrScope_out != attrScope) QitCDF ("22.2", status);

if (maxEntry_out !'= entryNum) QuitCDF ("22.3", status);

if (attrNumout !'= 0OL) QuitCDF ("22.4", status);

/**

. . . .
Inquire attribute entries.
**/

180

status = CDFlib (SELECT_, ATTR_, OL,
gENTRY_, entryNum
GET_, 9ENTRY_DATATYPE_ , &entryDataType_out,
gENTRY_NUMELEMS , &entryNunEl ens_out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("23.0", status);

if (entrybDataType_out != entryDataType) QuitCDF ("23.1", status);
if (entryNunEl ens_out !'= entryNunEl ens) QuitCDF ("23.1", status);

status = CDFlib (SELECT , ATTR, 1L,
r ENTRY_, 1L,
GET_, rENTRY_DATATYPE , &entryDataType_out,
r ENTRY_NUMELEMS , &entryNunEl ens_out,
NULL) ;
if (status < CDF_OK) QuitCDF ("23a.0", status);

CDF_BYTE) QuitCDF ("23a.1", status);

if (entryDataType_out ! -
1L) QuitCDF ("23a.1", status);

if (entryNunEl ens_out !

status = CDFlib (SELECT_, ATTR, 2L,
ZENTRY_, OL,
CET_, zENTRY_DATATYPE , &entryDataType_out,
ZENTRY_NUMELEMS , &entryNunEl ens_out,
NULL_) ;
if (status < CDF_OK) QuitCDF ("23b.0", status);

if (entryDataType_out != CDF_REAL8) QuitCDF ("23b.1", status);
if (entryNunkl ens_out !'= 1L) QuitCDF ("23b.1", status);

/**

*
Get error text.
**/

status = CDFlib (SELECT , CDF_STATUS , CDF XK,
CET_, STATUS TEXT_, errorText,
NULL_) ;

if (status < CDF_OK) QuitCDF ("24.0", status);

/**

* Sel ect zMode and inquire CDF.

**/

status = CDFlib (SELECT , CDF zMODE , zMODEONZ2,
NULL_);
if (status < CDF_OK) QuitCDF ("25.0a", status);

status = CDFlib (SELECT , ATTR_, OL,
GET_, CDF_NUMATTRS , &nunGattrs,
CDF_NUMW/ATTRS _, &nunvattrs,
CDF_NUM VARS , &nunRvars,
CDF_NUMzVARS , &nuniZvars,
ATTR_MAXgENTRY_, &maxGentry,
ATTR NUMJENTRI ES , &nunentri es,
zZVARs _MAXREC , &maxRecQut,
NULL_) ;
if (status < CDF_OK) QuitCDF ("25.0b", status);

status = CDFlib (SELECT , ATTR, 1L,
GET_, ATTR_MAXrENTRY_, &maxRentry,
ATTR_NUM ENTRI ES , &numnRentri es,
ATTR_MAXZENTRY_, &maxZentry,
ATTR_NUMZENTRI ES , &nun¥entri es,

181

NULL_) ;
if (status < CDF_OK) QuitCDF ("25.0c", status);

status = CDFlib (SELECT_, CDF_zMODE , zMODEoff,
NULL) ;
if (status < CDF_OK) QuitCDF ("25.0d", status);

(numGattrs !'= 1) QuitCDF ("25.1", status);
(nunvattrs !'= 2) QitCDF ("25.1a", status);
(nunmRvars !'= 0) QuitCDF ("25.1b", status);
(nunmzvars !'= 3) QuitCDF ("25.2", status);
(maxGentry !'= entryNum) QuitCDF ("25.3", status);
(numCentries !'= 1) QuitCDF ("25.4", status);
(maxRentry !'= -1) QitCDF ("25.5", status);
(nunRentries !'=0) QuitCDF ("25.6", status);
(maxZentry !'= 1) QitCDF ("25.7", status);
(nunZentries !'= 1) QuitCDF ("25.8", status);
(maxRecQut !'= 2L) QuitCDF ("25.9", status);

—h —h —h —h —h —h —h —h —h —h —h

/**

. .
Attenpt to cl ose variables.
**/

status = CDFlib (SELECT , rVAR , OL,
CLOSE , rVAR
NULL_);
if (status !'= SINGLE FILE FORMAT) QuitCDF ("26.0", status);

status = CDFlib (SELECT , zVAR, OL,
CLOSE , zVAR
NULL)

if (status != SINGLE_FI LE_FORMAT) QuitCDF ("26.1", status);

/**

* Modify entries/attribute.

**/

status = CDFlib (SELECT_, ATTR_, OL,
gENTRY_, entryNum
PUT_, gENTRY_DATASPEC , entryDataTypeNew, entryNuntl ens,
NULL_) ;
if (status < CDF_OK) QuitCDF ("26a.0a", status);

status = CDFlib (SELECT_, ATTR, 1L,
rENTRY_, 1L,
PUT , rENTRY_DATASPEC , CDF_U NT1, 1L,
NULL) ;
if (status < CDF_OK) QuitCDF ("26a.0b", status);

status = CDFlib (SELECT_, ATTR, 2L,
ZENTRY_, OL,
PUT , zENTRY_DATASPEC , CDF_EPCCH, 1L,
NULL) ;
if (status < CDF_OK) QuitCDF ("26a.0c", status);

status = CDFlib (SELECT_, ATTR, OL,
PUT_, ATTR SCOPE_, VARI ABLE SCOPE,
ATTR_SCOPE_, GLOBAL_SCOPE,
NULL_);
if (status < CDF_OK) QuitCDF ("26a.0d", status);

/**

* Delete entries/attribute/vari abl es.
**/

182

status = CDFlib (SELECT_, ATTR_, OL,
gENTRY_, entryNum
DELETE , gENTRY_,
SELECT , ATTR_, 1L,
r ENTRY_, 1L,
DELETE , rENTRY_,
SELECT , ATTR_, 2L,
ZENTRY_, OL,
DELETE , zENTRY_,
NULL_) ;
if (status < CDF_OK) QuitCDF ("25a.0.1", status);

status = CDFlib (SELECT_, ATTR, OL,
DELETE_, ATTR_,
SELECT , rVAR , OL,
DELETE , rVAR,
SELECT_, zVAR_, OL,
DELETE , zVAR ,
NULL) ;
if (status < CDF_OK) QuitCDF ("25a.0.2", status);

/**

* Cl ose CDF.

**/

status = CDFlib (CLOSE , CDF_,
NULL_);
if (status < CDF_OK) QuitCDF ("26.2", status);

/**

* Successful conpl etion.

**/

return EXI T_SUCCESS ;
}

/**

* Qui t CDF.

**/

void QuitCDF (where, status)
char *where;
CDFst at us st at us;
{
char text[CDF_STATUSTEXT LEN+1];
printf ("Aborting at %...\n", where);
if (status < CDF_CK)
CDFli b (SELECT_, CDF_STATUS , status,
GET_, STATUS TEXT_, text,
NULL) ;
printf ("%\n", text);

}
COFlib (CLOSE_, CDF_,
NULL);
printf ("...test aborted.\n");
exit (EXIT_FAILURE);

183

184

Appendix E

Release Notes

E.1 Introduction
This appendix should provide you with all of the information you need to know to begin using CDF V2.7 assuming that

you are already familiar with CDF V2.6. Refer to Appendix D from CDF V2.6 User's Guide for its release notes. For
additional information, contact CDF User Support.

E.2 Supported Systems
CDF V2.7 is currently supported on the following computers/operating systems.
1. VAX (OpenVMS & POSIX shell)
2. Sun (SunOS & SOLARIS)
3. DECstation (ULTRIX)
4. Silicon Graphics Iris & Power Series (IRIX)
5. IBM RS6000 series (AIX)
6. HP 9000 series (HP-UX)
7. PC (MS-DOS, Windows 3.x, Windows NT/95/98, Linux, & QNX)
8. NeXT (Mach)
9. DEC Alpha (OSF/1 & OpenVMS)

10. Macintosh (MacOS 7.0/8.0 & Power PC)

E.3 Changes for CDF V2.7

CDF V2.7 is backward compatible with CDF V2.6. Files from CDF V2.7 have the same data structure as those of CDF
V2.6. So, programs created from CDF V2.6 can access CDF V2.7 files without any changes. Some changes have been
made for the CDF V2.7 distribution. . .

1. More robust/stable CDF library and toolkit programs.

185

2. Addition of CDF Java APIs to allow users to develop platform independent CDF applications. With Java APIs,
you can do pretty much everything that current C and Fortran applications can do, plus the followings:

* Copy a variable with without data.

* A copied variable can be stored into the same or different CDF. * Copy data from one variable to another
variable.

3. Addition of Java verion of the CDF toolkit programs (e.g., SkeletonTable, SkeletonCDF, CDFconvert, etc.) for
Unix systems. Their command line based tool programs are still available.

186

Appendix F

Glossary

AHUFF

allocated records

Attribute

big-endian

blocking factor

Caching

CDF

The Adaptive Huffman compression algorithm.

For uncompressed variables in a single-file CDF it is possible for an
application to allocate records before they are written. This has the advantage
of reducing the indexing overhead in the dotCDF file which will improve
performance when accessing a variable. An application would generally then
write to the records that were allocated.

A CDF object with which entries of metadata are associated.

The byte ordering in which the most significant byte (MSB) is stored in the
lowest memory location.

For a standard variable (in a single-file CDF), the blocking factor is the
minimum number of records actually allocated when a new record is written.
More records may be allocated than are actually needed in order to keep the
variable's records as contiguous as possible (with the assumption that the
records will eventually be written).

For a compressed variable in a single-file CDF, the blocking factor is the
maximum number of records per compressed block.

For an uncompressed variable having sparse records in a single-file CDF, the
blocking factor is the number of records allocated in the staging scratch file.
For this type of variable the staging scratch file is used to optimize the
indexing in the dotCDF file by storing sequential records contiguously when
possible.

Blocking factors are not applicable to variables in multi-file CDFs.

The method used by the CDF library to improve performance when accessing
a file. An attempt is made to keep commonly accessed blocks of the file in
memory rather than repeatedly reading them from or writing them to disk.

This term is used in more than one way. . .

1. The actual files that contain your data/metadata. For example: The CDF
library must be used to create a "CDEF."

187

CDF base name

CDF distribution

CDF library

CDF toolkit

CDFbrowse

CDFedit

CDFexport

CDFstats

CDFcompare

CDFconvert

CDFinquire

CDF OK
cdfh
cdf.inc
cdfdf.inc
cdfdvf.inc
cdfmsf.inc

column-major

Compression

conceptual view

2. The software distribution containing the CDF library, include files, and
toolkit. For example: We like using "CDF" to store our data.

The file name of a CDF minus the extension (or extensions if a multi-file
CDF).

The directory of software consisting of the CDF library, include files, and
toolkit.

The software library that is used to access a CDF.

A set of utility programs which ease the creation, modification, and
verification of CDFs.

A read-only version of CDFedit.

A CDF toolkit program that allows the display and modification of a CDF's
contents.

A CDF toolkit program that allows the (possibly filtered) contents of a CDF to
be exported to the terminal screen, a text file, or another CDF.

A CDF toolkit program that generates a report containing various statistics
about a CDF's variables.

A CDF toolkit program that reports any differences between two CDFs.

A CDF toolkit program that allows various overall properties of a CDF to be
changed (in a newly created CDF).

A CDF toolkit program that displays the version of the CDF distribution being
used, many of the configurable parameters, and the default CDF toolkit
qualifiers/options.

A completion status code indicating unqualified success.

An include file used in C applications.

An include file used in Fortran applications.

An include file used in Digital Visual Fortran applications.

An include file used in Digital Visual Fortran applications.

An include file used in Microsoft Fortran applications.

The variable majority where the first index of a multidimensional array of
values increments the fastest.

The process of encoding a group of bytes into a smaller group of bytes, storing
the smaller group of bytes, and then decoding the smaller group of bytes back
to the original group of bytes. CDF allows both a CDF and/or individual
variables to be compressed when stored.

The way that values along a dimension having a variance of NOVARY are
made to appear as if they do actually exist (only one value is actually

188

Current

data specification

data type

Decoding

DLLCDF.DLL

dllcdf.PPC

dllcdf.68K

dimension variance

Dimensionality

dotCDF file

Encoding

Entry

error code

Format

full-physical record
GAttribute
GEntry

global scope

physically stored). This also applies to records beyond the last record actually
stored. The conceptual view of a variable consists of "virtual" records and
values (in addition to the physical records and values actually stored).

When the Internal Interface is used, current objects/states are those items
affected when an operation is performed. For example, a current CDF is
selected and then any operation performed involving a CDF is performed on
that CDF (until a different current CDF is selected).

For a variable or attribute entry the data type and number of elements of that
data.

For a variable or attribute entry, the type of data being stored (e.g., integer,
floating-point, character).

The integer/floating-point representation of data values passed to an
application by the CDF library as they are read from a CDF. This is
independent of the way the data values are physically stored in the CDF.

The dynamic CDF library for Windows NT/95/98 systems.

The dynamic CDF library for Macintosh Power PC systems.

The dynamic CDF library for Macintosh 68K systems.

The property of a variable that specifies whether or not the values along a
dimension change or stay the same.

The number of dimensions and the dimension sizes for the rVariables or a
zVariable.

A file having an extension of .cdf (or .CDF if the operating system being used
prefers uppercase). For a single-file CDF this will be the only file. For a
multi-file CDF this file will exist along with zero or more variable files
(depending on the number of variables in the CDF).

The integer/floating-point representation of the data values physically stored in
a CDF.

A CDF object in which metadata is stored. An entry is associated with an
attribute.

A status code indicating that a fatal condition was encountered. The operation
was aborted.

In reference to a CDF, the way in which files are used to store the CDF's
control/data/metadata. This may be single-file or multi-file.

A variable record consisting of values exactly as physically stored in the CDF.
A global scoped attribute.
An entry for a gAttribute.

Global scope indicates that an attribute describes some property of the entire
CDF.

189

GZIP

host decoding
host encoding
HUFF

hyper access

IDL Interface

IEEE 754

include file

Indexing

informational code

Internal Interface

Item

libedf.a
libedf.sl
libedf.so
LIBCDF.LIB
LIBCDF.OLB

little-endian

Majority

Metadata

Monotonicity

The Gnu ZIP compression algorithm.
The decoding of the computer currently being used.
The encoding of the computer currently being used.
The Huffman compression algorithm.

A variable access method in which multiple records/values are read/written for
a variable.

A set of functions callable from within IDL (Interactive Data Language) that
allow access to CDFs. The CDF distribution contains an IDL interface in
addition to the CDF interface built into IDL by Research Systems, Inc. (RSI -
the distributors of IDL).

The floating-point representation of XDR.

A file, included by a C or Fortran application, that contains constants
recognized by the CDF library pertaining to various aspects of CDF

objects/states.

The method used in a single-file CDF to keep track of where each variable's
records are located.

A status code indicating success but providing some additional information
that may be of interest.

A set of routines in the CDF library callable from C and Fortran applications
that provide all types of access to CDFs.

When the Internal Interface is used, an object or state on which a function is
performed.

The static CDF library on UNIX systems.

The dynamic CDF library on HP-UX systems.

The dynamic CDF library on UNIX (other than HP-UX).

The static CDF library on MS-DOS or Windows NT/95/98 systems.
The CDF library on VMS and OpenVMS systems.

The byte ordering in which the least significant byte (LSB) is stored in the
lowest memory location.

The order in which the values of a multidimensional array are stored. This
may be either row-major or column-major.

Data about data. A CDF stores metadata using attributes and attribute entries.
The property of a variable that specifies whether or not that variable's values

increment or decrement (or neither) along a dimension or from record to
record.

190

multi-file

multiple variable access

network encoding

NOVARY

NRYV variable

NSSDC

number of elements

Object

Operation

pad value

physical record
physical value
read-only

record variance

reserve percentage

REntry

row-major

A CDF format. Multi-file CDFs consist of one file for control/metadata and
one file per variable of data.

A variable access method in which one full-physical record is read/written for
each of one or more variables.

The encoding that uses the XDR representation.

A record/dimension variance indicating that the values do not change from
record to record or along a dimension.

Non-record variant variable. A variable whose values do not change from
record to record (a record variance of NOVARY).

National Space Science Data Center.

For a variable the number of instances of the data type at each value. For an
attribute entry the number of instances of the data type for that entry.

When the Internal Interface is used, an item that exists and may be
accessed/manipulated (e.g., a CDF or variable).

When the Internal Interface is used, a function performed on an item (e.g.,
creating or writing).

A value written to a variable by the CDF library in those cases where a
physical record must be written but not all of its values have been specified by
an application. For example, when a single value is written to a new record, all
of the other values are written using the pad value.

A variable record actually stored in a CDF.
A variable value actually stored in a CDF.
A mode of the CDF library in which modifications to a CDF are not allowed.

The property of a variable that specifies whether or not its values change from
record to record.

For a compressed variable, the reserve percentage specifies how much
additional space to allocate in the dotCDF file when a compressed block of
records is initially written. A value of 0 (zero) causes no reserve space to be
allocated. Values from 1 to 100 cause at least that percentage of the
uncompressed size to be allocated. Values greater than 100 cause that
percentage of the compressed size to be allocated (but not exceeding the
uncompressed size).

An entry for a vAttribute corresponding to an rVariable.
A run-length encoding compression algorithm. Currently, the only type of
RLE compression supported is the run-length encoding of bytes containing

Z€ro.

The variable majority where the last index of a multidimensional array of
values increments the fastest.

191

RV variable

RVariable

scratch directory

scratch files
Scope

sequential access

single-file

single value access

skeleton CDF

skeleton table

SkeletonCDF

SkeletonTable

sparse arrays

sparse records

Standard Interface

standard variable

State

Record variant variable. A variable whose values change from record to
record (a record variance of VARY).

"R" variable. A CDF object in which data values are stored. All rVariables
have the same dimensionality.

The directory in which the CDF library creates scratch files. This directory
may be specified by a user or an application.

Temporary files used by the CDF library to minimize core memory usage.
The intended use for an attribute. This may be global scope or variable scope.

A variable access method in which values are read/written in the physical order
in which they are stored in the CDF.

A CDF format. Single-file CDFs are entirely contained within one file.

A variable access method in which exactly one value is read/written for a
variable.

A CDF consisting of only control, metadata, and NRV variable values.

A text file containing the control, metadata, and traditionally only the NRV
variable values of a CDF. RV variable values may now also be included in a
skeleton table. A skeleton table is read by the SkeletonCDF toolkit program
which then creates the corresponding skeleton CDF (or complete CDF if the
RV variable values also existed in the skeleton table). The SkeletonTable
toolkit program can be used to create a skeleton table from a CDF.

A CDF toolkit program which creates a skeleton CDF based on a skeleton
table. A complete CDF may also be created if the skeleton table contained RV
variable values in addition to NRV variable values.

A CDF toolkit program which creates a skeleton table from a CDF.

A property assigned to a variable indicating that only those values written to a
record should be stored. Because the values of a variable record can be written
in any order this allows gaps of missing values to occur.

A property assigned to a variable indicating that only those records written to
the variable should be stored. Because the records of a variable can be written
in any order this allows gaps of missing records to occur.

A set of routines in the CDF library callable from C and Fortran applications
that provide access to a commonly used subset of the capabilities of the
Internal Interface. This interface was defined with the release of CDF V2.0
and has not changed since. New features since that time are available only
through the Internal Interface (e.g., zVariables and zMode).

A variable in a single-file CDF that is not compressed nor has sparse records or
arrays.

When the Internal Interface is used, a property pertaining to an object (e.g., a
CDF's format or variable's data specification).

192

status code

status handler

variable file

variable scope

variance (dimension)

variance (record)

VARY

VAttribute

virtual record

virtual value

warning code

XDR

ZEntry

ZMode

ZVariable

The result of a CDF function/subroutine call. CDF OK indicates unqualified
success.

A function/subroutine that acts upon a status code received from the CDF
library.

In a multi-file CDF, these are the files containing the data values for each
variable (in one file per variable). These files are named using the CDF's base
name with extensions of ".v0', *.v1', and so on for rVariables and .z0', *.z1',
and so on for zVariables.

Variable scope indicates that an attribute describes some property of each
variable.

The property of a variable that specifies whether or not the values along a
dimension change or stay the same.

The property of a variable that specifies whether or not its values change from
record to record.

A record/dimension variance indicating that the values change from record to
record or along a dimension.

A variable scoped attribute.

A variable record that is not actually stored in a CDF but does appear in the
conceptual view of the CDF. Virtual records would be those records beyond
the first record of an NRV variable and those records beyond the last record
actually written to an RV variable.

A variable value this is not actually stored in a CDF but does appear in the
conceptual view of the CDF. Virtual values would be those values beyond the

first value of a dimension whose variance is NOVARY.

A status code indicating that the operation did complete but probably not as
expected.

External Data Representation. An integer/floating-point representation using
big-endian byte ordering and the IEEE 754 floating-point representation.

An entry for a vAttribute corresponding to a zVariable.

A mode of the CDF library in which rVariables are made to appear as
zVariables (and rEntries appear as zEntries).

"Z" variable. A CDF object in which data values are stored. zVariables can

have dimensionalities that are different than those of the rVariables (and each
other).

193

Index

-0.0 to 0.0 Mode, 28
Adaptive Huffman compression, 60
allocated records, 45
assumed scope, 56
attributes, 11, 55
creating, 55
deleting, 56
entries, 11, 57
accessing, 57
data specification, 57
data type, 57
number of elements, 57
deleting, 57
gEntry, 11, 56
numbering, 57
rEntry, 11, 56
FILLVAL, 64, 88
naming, 55
case sensitivity, 55
trailing blanks, 55
numbering, 56, 84
assigning, 56
SCALEMAX, 65, 88
SCALEMIN, 65, 88
scopes, 56
assumed, 56
converting, 56
correcting, 56
global, 56
purpose, 56
restrictions, 56
variable, 56
special, 64
usage, 65, 69, 87, 94
VALIDMAX, 64, 88
VALIDMIN, 64, 88
vAttributes, 11, 56
big-endian, 35
blocking factor, 46
caching scheme, files, 29
CDF, 1
definition, 1
deleting, 72, 79, 100
distribution, 102
CDF Java Interface, 14
CDF library, 2, 25
caching scheme, 29

selecting, 67, 74, 81, 85,91, 97, 100

interfaces, 13, 25
limits, 28

open CDFs, 28
modes, 27

-0.0to 0, 28

decoding, 36

195

performance considerations, 37

read-only, 27

zMode, 27, 66, 73, 81, 84, 90, 96, 100

example, 27
selecting, 27
zMode/1, 27
zMode/2, 27
scratch files, 29
CDF toolkit, 12, 61
CDFbrowse, 104
CDFcompare, 82
CDFconvert, 76
CDFdir, 103
CDFedit, 65
CDFexport, 69
CDFinquire, 101
CDFlist, 104
CDFstats, 87
CDFwalk, 105
command line syntax, 61
default settings, 62
executable names, 62
Java version, 64
Macintosh user interface, 62
SkeletonCDF, 98
SkeletonTable, 93
Windows NT/95/98 interface, 64
CDF_ATTR NAME LEN, 38
CDF_EPOCH, 59
CDF error, 131
CDF_VAR NAME LEN, 38
CDFbrowse, 104
CDFcompare, 82
executing, 82
output, 87
CDFconvert, 76
executing, 76
output, 82
CDFdir, 103
executing, 103
output, 104
CDFedit, 65
executing, 65
interaction with, 68
CDFerror, 131
CDFexport, 69
executing, 70
interaction with, 76
CDFinquire, 101
executing, 102
output, 103
CDFs, 30
accessing, 30
browsing, 65

closing, 31
comparing, 82
compression, 7, 37
algorithms, 59
changing, 76
conceptual organization, 1
converting, 76
creating, 31
editing/modifying, 65
encoding, 7, 33
changing, 33, 76
equivalent, 35
host, 34
network, 34
performance considerations, 36
exporting, 69
file extension, 32
file format, 2, 32
changing, 32
default, 32
multi-file, 33
performance considerations, 33
single-file, 32
filtering, 69
limits, 28, 38
listing, 69
naming, 31, 38
trailing blanks, 31
wildcards, 61
opening, 31
statistics, 87
subsetting, 69
supported systems/platforms, 185
verifying, 82
CDFstats, 87
executing, 88
output, 92
compression, 7
algorithms, 59
CDF file(s), 7, 37
variable(s), 7, 47
conceptual organization, 1
data specification, 40
attribute entry, 57
variable, 40
data types, 58
character, 58
EPOCH, 59
equivalent data types, 59
floating point, 58
integer, 58
decoding, CDF, 36
definitions file, 62
dimensionality, variable, 40
encoding, CDF, 33
EPOCH, 59
syntax, 59
examples, 15
C program, 15
conceptual view, 9
data set, flat, 8
Fortran program, 21

196

Java programs, 141
physical view, 10
skeleton table, 20, 118
FILLVAL attribute, 64, 88, 89
FORMAT attribute, 64, 69, 87
format, CDF, 32
GZIP compression, 60
host decoding, 37
host encoding, 34
Huffman compression, 60
hyper access, variable, 50
IDL
CDF's interface, 26, 123
IEEE 754, 28, 35, 190
indexing, variable records, 32
initial records, 45
interfaces
IDL, 26, 123
internal, 14, 25
standard, 13, 25
Internal Interface, 14, 25
limits, 28, 38
attribute name length, 38
CDF file name length, 38
dimensions, 38
open CDFs, 28
variable name length, 38
little-endian, 35
majority
variable, 48
MONOTON attribute, 64, 69, 88
multi-file format, 33
multiple variable access, 53
network encoding, 34
pad values, variable, 54
performance considerations
decoding, 33, 37
encoding, 36
format, 33
majority, 49
qualifier
special, 65
read-only mode, 27
release notes, 185
reserve percentage, compression, 48

Run-Length encoding compression, 59

sample Java and C programs, 141
SCALEMAX attribute, 65, 88
SCALEMIN attribute, 65, 88
scope, attribute, 56
scratch files, 29
sequential access, variable, 49, 52
single-file format, 32
Skeleton CDF, 98
skeleton table, 93, 98
creating, 93, 101
example, 118
file extension, 101
format, 107
SkeletonCDF, 12, 20, 98
executing, 99
SkeletonTable, 12, 93, 107

executing, 94
output, 98
sparseness
arrays, 7, 47
records, 7, 44
Standard Interface, 13, 25
status codes, 131
categories, 131
constants and explanation text, 131
trailing blanks
attribute name, 55
CDF file name, 31
variable name, 39
VALIDMAX attribute, 64, 69, 88
VALIDMIN attribute, 64, 69, 88
variables, 1, 7, 38
accessing, 39
hyper read/write, 50
example, 51
reading, 49
writing, 49
multiple variable, 53
sequential values, 52
example, 52
single values, 49
arrays, 40
closing, 39
compression, 7, 47
algorithms, 59
reserve percentage, 48
data specification, 40
changing, 40
data type, 40
number of elements, 41
deleting, 40
dimensionality, 40
majority, 48

197

changing, 49
example, 49
naming, 39
case sensitivity, 39
trailing blanks, 39
non-record-variant (NRV), 41
numbering, 40
assigning, 40
opening, 39
pad values, 54
default, 55
usage, 54
records, 42
allocated, 45
blocking factor, 46
compression, 47
reserve percentage, 48
deleting, 47
indexing, 32
initial, 45
maximum, 42
numbering, 44
physical, 43
sparse, 44
virtual, 42
record-variant (RV), 41
reserve percentage, 48
rVariables, 8, 38
sparse arrays, 47
sparse records, 44
zVariables, 10, 38
variance
dimension, 41
record, 41
XDR, 34
zMode, 27

	Introduction
	Why Use CDF?
	Conceptual Organization
	Features of the CDF Library
	File Format Options
	Data Encoding Options
	Compression
	Sparseness
	Variable Data Access Options

	Organizing Your Data in a CDF
	Variables

	Attributes
	CDF Toolkit
	Library Interface Routines
	Standard Interface
	Internal Interface

	CDF Java Interface
	Examples
	Creating a CDF, the Hard Way (But Not That Hard)
	Creating a CDF, an Easier Way

	CDF Library
	
	Interfaces
	CDF Modes
	Limits
	Scratch Files
	Caching Scheme

	CDFs
	Accessing
	Creating
	Opening
	Closing
	Deleting
	Naming
	Format
	Encoding
	Decoding
	Compression
	Limits

	Variables
	Types
	Accessing
	Opening
	Closing.
	Naming
	Numbering
	Deleting
	Dimensionality
	Data Specification
	Record Variance
	Dimension Variance
	Records.
	Sparse Arrays
	Compression
	Majority
	Single Value Access
	Hyper Access
	Sequential Access
	Multiple Variable Access
	Variable Pad Values.

	Attributes
	Naming
	Numbering
	Attribute Scopes
	Deleting
	Attribute Entries

	Data Types
	Integer Data Types
	Floating Point Data Types
	Character Data Types
	EPOCH Data Type
	Equivalent Data Types

	Compression Algorithms
	Run-Length Encoding
	Huffman
	Adaptive Huffman
	GZIP

	Introduction
	
	VMS, UNIX & MS-DOS
	Macintosh
	Windows NT/95/98
	Java Version of the CDF Toolkit
	Special Attributes
	Special Qualifier

	CDFedit
	Introduction
	Special Attribute Usage
	Executing the CDFedit Program
	Interaction with CDFedit

	CDFexport
	Introduction
	Special Attribute Usage
	Executing the CDFexport Program
	Interaction with CDFexport

	CDFconvert
	Introduction
	Executing the CDFconvert Program
	Output from the CDFconvert Program

	CDFcompare
	Introduction
	Executing the CDFcompare Program
	Output from the CDFcompare Program

	CDFstats
	Introduction
	Special Attribute Usage
	Executing the CDFstats Program
	Output from the CDFstats Program

	SkeletonTable
	Introduction
	Special Attribute Usage
	Executing the SkeletonTable Program
	Output from the SkeletonTable Program

	SkeletonCDF
	Introduction
	Executing the SkeletonCDF Program
	Creating the Skeleton Table

	CDFinquire
	Introduction
	Executing the CDFinquire Program
	Output from the CDFinquire Program

	CDFdir
	Introduction
	Executing the CDFdir Program
	Output from the CDFdir Program

	CDFbrowse
	CDFlist
	CDFwalk

